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Abstract A parity subgraph of a graph is a spanning subgraph such that the degrees
of all vertices have the same parity in both the subgraph and the original graph. Let
G be a cyclically 6-edge-connected cubic graph. Steffen (Intersecting 1-factors and
nowhere-zero 5-flows 1306.5645, 2013) proved thatG has a nowhere-zero 5-flow ifG
has two perfect matchings with at most two intersections. In this paper, we show that
G has a nowhere-zero 5-flow if G has two parity subgraphs with at most two common
edges, which generalizes Steffen’s result.

1 Introduction

Let G be a graph. The set of neighbors of a vertex v in G is denoted by NG(v). The
degree dG(v) of a vertex v is the number of edges incident with v. An r -regular graph
is a graph with each vertex having degree r . A circuit in G is a 2-regular connected
graph. An r -factor of G is a spanning r -regular subgraph of G. A perfect matching
of G is a 1-factor of G. A subgraph P of G is a parity subgraph if dP (v) ≡ dG(v)

(mod 2) for all v ∈ V (G). An even subgraph H of G is a spanning subgraph with
the property that dH (v) ≡ 0 mod 2 for each v ∈ V (G). So a subgraph P is a parity
subgraph of G if and only if G − P is an even subgraph of G. The oddness of G,
denoted by o(G), is the minimum number of odd components in a spanning even
subgraph of G. For S ⊆ V (G), let ∂G(S) be the set of edges with one end in S and
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another in V (G)\S. If S is a proper subset of V (G), then ∂G(S) is an edge-cut of G.
A bridge is an edge-cut of order one. A cyclic edge-cut F of G is an edge-cut of G
such that two components of G − F contain circuits. The cyclic edge-connectivity of
G, denoted by n∗

G , is the minimum cardinality of a cyclic edge-cut of G. We call G is
cyclically k-edge-connected if n∗

G = k.
Let k be a positive integer and let D(G) be an orientation graph of a graph G. Let

ϕ be a function from the set of directed edges of D(G) into the set {0, 1, . . . , k − 1}.
For S ⊆ V (G) let

δϕ(S) =
∑

e∈∂+(S)

ϕ(e) −
∑

e∈∂−(S)

ϕ(e).

The function ϕ is a k-flow on G if δϕ(S) = 0 for every S ⊆ V (G). The support of
ϕ is the set {e ∈ E(G) | ϕ(e) �= 0}, and it is denoted by supp(ϕ). A k-flow ϕ is an
integer nowhere-zero k-flow (NWZ k-flow for short) on G if supp(ϕ) = E(G). (For
more flexible definitions, see e.g. [11]).

In 1954, Tutte proposed the following conjecture.

Conjecture 1.1 (5-Flow conjecture) Every bridgeless graph has a nowhere-zero 5-
flow.

This is one of the famous Tutte’s integer flow conjectures still open.
Tutte also proposed a weaker conjecture that there exists an integer k ≥ 5 such

that every bridgeless graph has a NWZ k-flow. This was proved by Jaeger [5,6] (also
independently by Kilpatrick [8]) for k = 8 (known as 8-flow theorem). This result
was improved by Seymour [10] to k = 6 (known as 6-flow theorem).

Kochol [9] proved that a minimum counterexample to the 5-flow conjecture is a
cyclically 6-edge-connected cubic graph. Hence it suffices to prove 5-FlowConjecture
for these graphs. Jaeger [7] proved that every bridgeless cubic graph with a 2-factor
having 0 or 2 odd components has a NWZ 5-flow. Steffen [13] improved Jaeger’s
result as follows.

Theorem 1.2 (Theorem 1.2 in [13]) Every cyclically 6-edge-connected cubic graph
with two perfect matchings having at most two intersections has a NWZ 5-flow.

Clearly, for cubic graphs, a perfect matching is a parity subgraph, but not vice versa.
For example, Fig. 1(2) and (3) give two parity subgraphs of Petersen graph with one
common edge and two common edges, respectively.

In this paper, we generalize Steffen’s result to parity subgraphs with few common
edges. The main result is the following.

Theorem 1.3 Let G be a cyclically 6-edge-connected cubic graph and let P1, P2 be
two parity subgraphs of G. If |P1 ∩ P2| ≤ 2, then G has a NWZ 5-flow.

2 Preliminaries

Lemma 2.1 If G is a bridgeless cubic graph and P1, P2 are two parity subgraphs of
G, then o(G) ≤ 2|P1 ∩ P2|.
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(1) (2) (3)

Fig. 1 Petersen graph and its parity subgraphs, where the two parity subgraphs are colored by red and
blue, respectively, and the intersections are bicolored

Proof Let P1 = G − P1. Then P1 is an even subgraph. Let C be an odd component
of P1. Then ∂G(V (C)) ⊆ P1. Since P2 is a parity subgraph of G, |∂G(V (C)) ∩ P2| ≡
|∂G(V (C))| mod 2. That is ∂G(V (C)) ∩ P2 �= ∅. Since one edge in P1 ∩ P2 appears
in at most two of ∂G(V (C)) and C is an odd component of P1, o(G) ≤ 2|P1 ∩ P2|. ��

Let A be an Abelian group with additive notation. A nowhere-zero A-flow (NWZ
A-flow for short) on G is an assignment of a direction and a value of A\{0} to each
edge of G such that the sum of the values of outgoing edges is equal to the sum of the
values of ingoing edges at every vertex of G.

A graph G is called an Fk-graph (for k ≥ 2) (defined in [6,7]) if it satisfies the
following equivalent properties:

(a) for some additive group A of order k, G has a nowhere-zero A-flow;
(b) for every additive group A of order k, G has a nowhere-zero A-flow;
(c) G has a nowhere-zero k-flow.

A graph G is called a nearly F4-graph if it is possible to add a new edge to G in
order to obtain an F4-graph (defined in [7]).

The following two lemmas can be found in [7] or [3].

Lemma 2.2 (Theorem 3.6 in [7], or Theorem 4.5 in [3]) A bridgeless cubic graph G
admits a NWZ 4-flow if and only if G is 3-edge-colorable.

Lemma 2.3 (Theorem 8.1 in [7]) Every bridgeless nearly F4-graph is an F5-graph.

Jaeger [7] proved that bridgeless cubic graph with a 2-factor having 0 or 2 odd
components is nearly F4-graph and so is an F5-graph. The following lemma is an
analogous result.

Lemma 2.4 If G is a bridgeless cubic graph with an even subgraph having 0 or 2
odd components, then G has a NWZ 5-flow.

Proof By Lemma 2.3, it suffices to show that G is a nearly F4-graph. If the even
subgraph has no odd components, then G is 3-edge colorable and hence a F4-graph
by Lemma 2.2. If the even subgraph has two odd components, sayC andC ′ (C andC ′
may be isolated vertices), then its edges can be colored with colors (0, 1) and (1, 0) in
such away that each vertex, with exceptions of two vertices v ∈ V (C) and v′ ∈ V (C ′),
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is bicolored; if we now join v and v′ by a new edge and color all the uncolored edges
by (1, 1), then the resulting coloring of edges defines a NWZ Z2

2-flow. ��
An orientation D of G is an assignment of a direction to each edge. For S ⊆ V (G),

let ∂+
G (S) (resp. ∂−

G (S)) be the set of outgoing (resp. ingoing) edges of ∂G(S). The
oriented graph is denoted by D(G), d−

D(G)(v) = |∂−
G ({v})| and d+

D(G)(v) = |∂+
G ({v})|

denote the indegree and outdegree of vertex v in D(G), respectively.
We will use balanced valuations of graphs, which were introduced by Bondy [1]

and Jaeger [4]. A balanced valuation of a graph G is a function f from the vertex set
V (G) into the real numbers, such that for all X ⊆ V (G) : |∑v∈X f (v)| ≤ |∂G(X)|.
The following fundamental theorem is given by Jaeger.

Theorem 2.5 (Jaeger [4]) Let G be a graph with orientation D and k ≥ 3. Then G
has a NWZ k-flow if and only if there is a balanced valuation f of G with f (v) =
k

k−2

(
2d+

D(G)(v) − dG(v)
)
, for all v ∈ V (G).

In particular, Theorem 2.5 says that a cubic graphG has a NWZ 4-flow (resp. NWZ
5-flow) if and only if there is a balanced valuation of G with values in {±2} (resp.
{± 5

3 }).
If we describe a flow which relies on a specific orientation D of the edges of

G, then we also write (D, ϕ). For i ∈ {1, 2}, let (Di , ϕi ) be flows on G. The sum
(D1, ϕ1) + (D2, ϕ2) is the flow (D, ϕ) on G with orientation

D = D1|{e: ϕ1(e)≥ϕ2(e)} ∪ D2|{e: ϕ2(e)>ϕ1(e)},

and with flow value

ϕ(e) =
{

ϕ1(e) + ϕ2(e), if e received the same direction in D1 and D2;
|ϕ1(e) − ϕ2(e)|, otherwise.

Let G be a cubic 3-edge-colorable graph and let c be a 3-edge-coloring of G. A
canonical NWZ 4-flow of G with respect to c is defined as follows (Steffen [13]): For
i, j ∈ {1, 2, 3} with 1 ≤ i < j ≤ 3, let Hi, j be the 2-factor of G induced by the edges
c−1(i)∪ c−1( j). Let ϕ1,2 be the flow on the directed circuits of H1,2 with ϕ1,2(e) = 1
for all e ∈ E(H1,2), and let ϕ2,3 be the flow on the directed circuits of H2,3 with
ϕ2,3(e) = 2 for all e ∈ E(H2,3). Then ϕ = ϕ1,2 + ϕ2,3 is a NWZ 4-flow on G. Note
that the edges of c−1(1) have flow value 1, the edges of c−1(2) have flow value 1 or
3, and the edges of c−1(3) have flow value 2. The circuits of H2,3 are directed circuits
in D(G).

By the construction of the canonical NWZ 4-flow ϕ, ϕ induces a balanced valuation
f ofG with f (v) = 2(2d+

D(G)(v)−dG(v)) ∈ {±2} for all v ∈ V . Let A = {v | f (v) =
−2} and B = {v | f (v) = 2}. Then A and B forms a partition of V (G). A balanced
valuation which is induced by a canonical NWZ 4-flow is called a canonical balanced
valuation on G.

By the construction of canonical NWZ 4-flow, we have the following observation.
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Observation 2.6 Let c be a 3-edge-coloring of a cubic graph G, and let A, B be a
partition of V (G) which is induced by a canonical NWZ 4-flow with respect to c. If
e = xy ∈ c−1(1) ∪ c−1(2), then the following holds.

(i) ([13]) The two ends of e belong to different classes, i.e. x ∈ A if and only if y ∈ B.
(ii) e ∈ c−1(1) and x ∈ A if and only if e is orientated from y to x.

Let G[S] be the subgraph induced by the set S of vertices in a graph G.

Lemma 2.7 Let G be a cubic graph and T ⊆ V (G). If |T | > |∂G(T )| − 2, then
G[T ] contains circuit.
Proof Since |E(G[T ])| = 1

2 (3|T | − |∂G(T )|) = |T | − 1+ 1
2 (|T | + 2− |∂G(T )|) and

|T | > |∂G(T )| − 2, |E(G[T ])| > |T | − 1. Hence G[T ] is not a tree. ��
Lemma 2.8 (Menger’s theorem (directed vertex-disjoint version)) Let D = (V, A)

be a digraph and let S, T ⊆ V . Then the maximum number of vertex-disjoint directed
paths from S to T is equal to the minimum size of vertex set separating S from T .

3 Proof of Theorem 1.3

The first step, we claim that if |P1 ∩ P2| ≤ 1, then G admits a NWZ 5-flow.

Claim 1 If |P1 ∩ P2| ≤ 1, then G has a NWZ 5-flow.

Proof By Lemma 2.1, o(G) ≤ 2|P1 ∩ P2| ≤ 2. The result follows directly from
Lemma 2.4. ��

Now, it suffices to show thatG has aNWZ5-flow ifG is cyclically 6-edge-connected
and |P1 ∩ P2| = 2.

Again by Lemma 2.4, we have

Claim 2 If |P1 ∩ P2| = 2 and o(G) = 2, then G has a NWZ 5-flow.

Nowwe consider the case that |P1 ∩ P2| = 2 and o(G) = 4. Let P1 ∩ P2 = {e1, e2}
and let ei = viwi for i = 1, 2.

Recall that P1 and P2 are parity subgraphs of the cubic graph G. For each vertex
v ∈ V (G), dPi (v) = 1 or 3, i=1, 2 and P1�P2 is an even subgraph of G, where
P1�P2 denote the symmetric difference of P1 and P2, i.e. the subgraph of G induced
by the edge set [E(P1) ∪ E(P2)] − [E(P1) ∩ E(P2)].
Claim 3 G has an even subgraph H having precisely four odd components with
the property that at most one component is an isolated vertex, and each component
contains precisely one vertex of {v1, v2, w1, w2} (see Fig. 2).
Proof If one of P1, P2, say P1, has atmost one vertex of degree three, then H = G−P1
is an even subgraph of G as desired.

Otherwise, both P1 and P2 have precisely two vertices of degree 3, then P =
P1�P2, is a 2-factor of G with precisely four odd circuits, as desired. ��
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Fig. 2 The even subgraph H

v2 w2

v1 w1

Let Cx be the odd component of H containing x for x ∈ {v1, v2, w2, w1}, where
Cw1 is either an odd circuit or an isolated vertex.

Let G ′ be the suppressed graph obtained from G −{e1, e2} by suppressing the four
degree 2 vertices v1, v2, w1, w2, denote the new edge by suppressing x by ex in G ′ for
x ∈ {v1, v2, w1, w2}. Then H ′, the subgraph of G ′ corresponding to H , is a 2-factor
of G ′ having no odd component and so G ′ is a 3-edge-colorable cubic graph.

Let c′ be a 3-edge-coloring of G ′ such that the edges of H ′ are colored with colors
2 and 3 such that ev1 , ev2 and ew2 are colored with color 3, and ew1 are colored with
color 3 if ew1 is an edge in a circuit of H ′, with color 1 if ew1 /∈ H ′. Let ϕ′ be the
canonical NWZ 4-flow with respect to c′, and let A′ and B ′ be the partition of V (G ′)
with respect to the canonical balanced valuation, say f ′, on G ′ induced by ϕ′. Note
that subdividing an edge does not change flow properties of graphs. Hence ϕ′ induces
a NWZ 4-flow ϕ′′ onG−{e1, e2}. Set A = A′ ∪{v1, v2} and B = B ′ ∪{w1, w2}. Then
A and B is a partition of V (G). Define a map f from V (G) to {± 5

3 } with f (v) = 5
3

if v ∈ A and f (v) = − 5
3 if v ∈ B.

In the following we claim that f is a balanced valuation on G and hence G has a
NWZ 5-flow by Theorem 2.5.

Suppose to the contrary thatG does not have aNWZ5-flow.Then f is not a balanced
valuation. Hence there is a subset S ⊆ V (G) such that |∑v∈S f (v)| > |∂G(S)|. Let
k = ||S ∩ A| − |S ∩ B||. Then, 5

3k > |∂G(S)|.
Claim 4 |∂G(S)| = 6 and k = 4.

Proof Note that |∂G(S)| = 3|S| − 2|E(G[S])| = 3(|S ∩ A| + |S ∩ B|) − 2|E(G[S])|
and k = ||S ∩ A| − |S ∩ B||. We have

k ≡ |∂G(S)| (mod 2). (1)

Moreover, for X ∈ {S, S}, if G[X ] contains no circuit, then |E(G[X ])| ≤ |X | − 1.
Hence

|∂G(S)| = |∂G(X)| ≥ 3|X | − 2(|X | − 1) = |X | + 2 ≥ 3. (2)

Otherwise, |∂G(S)| ≥ 6 , since G is cyclically 6-edge-connected.
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Let S′ = (S ∩ A′) ∪ (S ∩ B ′) and let k′ = ||S ∩ A′| − |S ∩ B ′||. Then |∂G ′(S′)| ≥
| ∑v∈S′ f ′(v)| = 2k′, since f ′ is a canonical balanced valuation on G ′ induced by the
NWZ 4-flow ϕ′ of G ′.

If |{e1, e2}∩ ∂G(S)| = 0, then either both of the two ends of ei (i = 1, 2) belong to
S or neither of them belongs to S. Hence k′ = k. So, 2k ≤ |∂G ′(S′)| = |∂G(S)| < 5

3k,
a contradiction.

If |{e1, e2}∩∂G(S)| = 1, without loss of generality, assume {e1, e2}∩∂G(S) = {e1}
and v1 ∈ S, then k′ = k − 1 or k + 1. In the worst case, 2(k − 1) ≤ |∂G ′(S′)| =
|∂G(S)| − 1 < 5

3k − 1, that is k < 3. By (2), 3 ≤ |∂G(S)| < 5
3k. This implies that

k = 2 and |∂G(S)| = 3, a contradiction with Eq. (1).
If |{e1, e2}∩∂G(S)| = 2, then each of ei (i = 1, 2) has one end in S and the another

one in S. Hence, k − 2 ≤ k′ ≤ k + 2. So, in the worst case, 2(k − 2) ≤ |∂G ′(S′)| =
|∂G(S)| − 2 < 5

3k − 2, that is k < 6. By (2), 3 ≤ |∂G(S)| < 5
3k. Hence the possible

choices for (k, |∂G(S)|) are (2, 3), (3, 4), (4, 6) and (5, 8). By Eq. (1), k must be 4
and |∂G(S)| = 6. ��

Let ∂G(S) = {e1, e2, f1, f2, f3, f4} and let fi = xi yi (i = 1, 2, 3, 4). By Claim 4,
wemay assume {v1, v2, x1, x2, x3, x4} ⊆ S. Let ϕ be the 4-flow onG with supp(ϕ) =
E(G) − {e1, e2}, which is obtained from the (canonical) NWZ 4-flow ϕ′′ on G −
{e1, e2}. Let G ′′ = G − {e1, e2}.

Without loss of generality, assume k = |S ∩ A| − |S ∩ B|(or we can choose the
orientation with an opposite direction). Let S′ and k′ be the same meaning as in the
proof of Claim 4. Then k′ = |S′ ∩ A′| − |S′ ∩ B ′| = 2 and ∂G ′(S′) = { f1, f2, f3, f4}.

Note that, for each circuitC of the 2-factor c′−1
(1)∪c′−1

(2), |E(C)∩∂G ′(S′)| ≡ 0
mod 2 and |V (C) ∩ A′| = |V (C) ∩ B ′| by Lemma 2.6 (i). So, there are at most two
circuitsC1 andC2 (maybeC1 = C2) of the 2-factor c′−1(1)∪c′−1(2)with the property
that |E(Ci ) ∩ ∂G ′(S′)| = 2 for i = 1, 2 and |S′ ∩ A′ ∩ (V (C1) ∪ V (C2))| − |S′ ∩
B ′ ∩ (V (C1) ∪ V (C2))| = k′ = 2. That is two of { f1, f2, f3, f4} are colored with
color 1, say f1, f2, and the others are colored with color 2, say f3, f4, and, moreover,
{x1, x2, x3, x4} ∈ A′.

By Lemma 2.6 (ii), fi is oriented from yi to xi for i = 1, 2. Then ϕ′( f1) =
ϕ′( f2) = 1 by the construction of ϕ′. Since ϕ′( fi ) = 1 or 3 for i = 3, 4, to guarantee
that δϕ′(S′) = 0, one of { f3, f4}, say f3, is oriented from y3 to x3 with ϕ′( f3) = 1,
the other one, say f4, is oriented from x4 to y4 with ϕ′( f4) = 3.

Let

Li = {z ∈ S | There is a directed path from vi to z in D(G[S])}, i = 1, 2

and

T2 = {z ∈ S | There is a directed path from z to w2 in D(G[S])}.

Then Li �= ∅ since vi ∈ Li for i = 1, 2, and T2 �= ∅ since w2 ∈ T2.

Claim 5 If |Li | �= 2, then v3−i ∈ Li , that is there is a directed path from vi to v3−i

in D(G[S]) for i = 1, 2.
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Proof We prove the case i = 2; the case i = 1 can be proved similarly.
Suppose to the contrary that v1 /∈ L2. Since L2 has no outgoing edges in D(G[S]),

f4 is the only possible outgoing edge of L2 in G ′. Hence ∂+
G ′(L2) = ∅ or { f4}. Since

G is bridgeless, ∂+
G ′(L2) �= ∅ and so ∂+

G ′(L2) = { f4}.
Recall that ϕ′′ is a NWZ 4-flow of G ′′(= G − {e1, e2}) induced by the canonical

NWZ4-flow ϕ′ onG ′. Hence δϕ′′(L2) = 0. Since ϕ′′( f4) = 3, ∂−
G ′′(L2) ≤ 3. It follows

that

|∂G(L2)| = |∂+
G ′(L2) ∪ ∂−

G ′′(L2) ∪ {e2}| = |∂−
G ′′(L2)| + 2 ≤ 5.

Since |L2| �= 2, |L2| ≥ 3.
If |∂−

G ′′(L2)| ≤ 2, then |L2| > |∂G(L2)| − 2. Hence G[L2] contains circuits by
Lemma 2.7.

If |∂−
G ′′(L2)| = 3, then each edge of ∂−

G ′′(L2) has flow value 1 since the only possible
outgoing edge f4 has flow value 3. We claim that |L2| ≥ 4. Suppose to the contrary
that |L2| = 3. Let L2 = {x4, v2, u}. Then |E(G[L2])| = 1

2 (3|L2| − |∂G(L2)|) = 2
since ∂G(L2) has five edges. Hence, by the definition of L2, D(G[L2]) is a directed
path starting at v2 and ending at x4 or u. This implies that there is an ingoing edge of
∂G ′′(L2) incident with v2. But this ingoing edge has flow value 2 by the construction
of the NWZ 4-flow ϕ′′, a contradiction. Therefore |L2| ≥ 4. Again by Lemma 2.7,
G[L2] contains circuits.

Note that the circuit Cx is a directed circuit in G ′′ for x ∈ {v1, v2, w2}. Then at
most one of Cv1,Cv2 ,Cw2 intersects with ∂G(S). Since v1 /∈ L2 and w2 /∈ L2, at least
one of the circuits Cv1,Cw2 is contained in G[L2]. It follows that ∂G(L2) is a cyclic
edge-cut with |∂G(L2)| ≤ 5, a contradiction with n∗

G = 6. ��
With a similar discussion, we have the following analogous claim.

Claim 6 If |T2| �= 2, then w1 ∈ T2, that is there is a directed path from w1 to w2 in
D(G[S]).

If |L2| �= 2 and |T2| �= 2, then, by Claim 5, there is a directed path P1 from
v2 to v1 in D(G[S]), and, by Claim 6, there is a directed path P2 from w1 to w2
in D(G[S]). Orient the edges e1 and e2 appropriately such that the circuit C with
E(C) = E(P1) ∪ E(P2) ∪ {e1, e2} is a directed circuit. Let ϕ2 be a 2-flow on G with
ϕ2(e) = 1, if e ∈ E(C), and ϕ2(e) = 0, otherwise. Then ϕ + ϕ2 is a NWZ 5-flow on
G, a contradiction with our assumption that G has no NWZ 5-flow.

Now, assume |L2| = 2 or |T2| = 2.

Claim 7 (1) If |T2| = 2, then f4 ∈ E(Cw2), T2 = {y4, w2} and there is a directed
path from y4 to w1 in D(G[S]).

(2) If |L2| = 2, then f4 ∈ E(Cv2) and L2 = {x4, v2}.
Proof (1) Since f4 is the only ingoing edge of T2 in G ′′, then y4 ∈ T2 and T2 =

{w2, y4}. If f4 /∈ E(Cw2), then V (Cw2) ∈ T2 (note that Cw2 is a directed circuit
in G ′′), a contradiction with |T2| = 2. Hence f4 ∈ E(Cw2).
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Let

M2 = {z ∈ S | there is a directed path from z to w1 in D (G[S])}.

If y4 /∈ M2, then ∂−
G ′′(M2) = ∅ since f4 is the only possible ingoing edge of M2

in G ′′. Hence ∂+
G ′′(M2) = ∅ and so ∂G(M2) = {e1}, a contradiction with G being

bridgeless. Hence y4 ∈ M2, i.e. there is a directed path from y4 to w1 in D(G[S]).
(2) It can be proved similarly to the statement (1). ��

If |T2| = 2, by Claim 7 (1), f4 ∈ E(Cw2), T2 = {y4, w2} and there is a directed
path, say P(y4, w1), from y4 to w1 in D(G[S]). Since f4 ∈ E(Cw2), f4 /∈ E(Cv1)

and f4 /∈ E(Cv2). Hence V (Cvi ) ⊆ S for i = 1, 2. So, |Li | ≥ 3, i = 1, 2. By
Claim 5, there is a directed path, say P(v1, v2) from v1 to v2 in D(G[S]). Orient the
edges e1 and e2 appropriately such that the circuit C with E(C) = E(P(v1, v2)) ∪
E(P(y4, w1)) ∪ {e1, e2} ∪ {y4w2} is a nearly directed circuit (the edge y4w2 is the
only possible edge having a reverse direction and ϕ′′(y4w2) = 2, y4w2 maybe not in
C if w2 ∈ V (P(y4, w1))). Let ϕ2 be a 2-flow on G with ϕ2(e) = 1, if e ∈ E(C), and
ϕ2(e) = 0, otherwise. Thenϕ+ϕ2 is aNWZ5-flowonG (note that (ϕ+ϕ2)(y4w2) = 1
if y4w2 ∈ E(C)), a contradiction with our assumption that G has no NWZ 5-flow.

If |L2| = 2, by Claim 7 (2), f4 ∈ E(Cv2). Hence f4 /∈ E(Cv1) and f4 /∈ E(Cw2).
So V (Cv1) ⊆ L1 and V (Cw2) ⊆ T2. This implies that |L1| ≥ 3 and |T2| ≥ 3. By
Claim 5, there is a directed path, say P(v1, v2), from v1 to v2 in D(G[S]) and, by
Claim 6, there is a directed path, say P(w1, w2), from w1 to w2 in D(G[S]).

Let

M1 = {z ∈ S | there is a directed path from z to v1 in D(G[S])}

and

M3 = {z ∈ S | there is a directed path from w2 to z in D(G[S])}.

If v2 ∈ M1 or w1 ∈ M3, then we can get a directed circuit C with E(C) =
E(P(w1, w2)) ∪ E(P(v2, v1)) ∪ {e1, e2} or E(P(v1, v2)) ∪ E(P(w2, w1)) ∪ {e1, e2}
by orienting e1 and e2 appropriately, where P(v2, v1) is a directed path from v2 to v1
in D(G[S]) and P(w2, w1) is a directed path from w2 to w1 in D(G[S]). Hence we
can define a 2-flow ϕ2 on G with ϕ2(e) = 1, if e ∈ E(C), and ϕ2(e) = 0, otherwise,
such that ϕ + ϕ2 is a NWZ 5-flow on G, again a contradiction with our assumption
that G has no NWZ 5-flow.

Now assume v2 /∈ M1 and w1 /∈ M3. Since M1 has no ingoing edges in D(G[S]),
∂−
G ′(M1) ⊆ { f1, f2, f3}.
If |∂−

G ′(M1)| ≤ 2, then |∂+
G ′(M1)| ≤ |∂−

G ′(M1)| ≤ 2 since ϕ′( fi ) = 1 for i =
1, 2, 3. Hence |∂G(M1)| = |∂G ′(M1) ∪ {e1}| ≤ 5. Since f4 /∈ E(Cv1) and f4 /∈
E(Cw2), V (Cv1) ⊆ M1 and V (Cw2) ⊆ M1. Hence ∂G(M1) is a cyclic edge-cut of
G, a contradiction with n∗

G = 6. Therefore, ∂−
G ′(M1) = { f1, f2, f3}. With a similar

discussion, we can show that ∂+
G ′(M3) = { f1, f2, f3} too.
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Fig. 3 The graph G′′ in Claim 8

Let M ′
1 = S − M1. Then L2 ⊆ M ′

1 and ∂+
G ′′(M ′

1) = { f4}. Hence |∂−
G ′′(M ′

1)| ≤ 3
since ϕ′′( f4) = 3. Let M ′

3 = S−M3. Since M2 ⊆ M ′
3, y4 ∈ M ′

3 and there is a directed
path from y4 to w1 in D(G[M ′

3]) by Claim 7.
If |M ′

1| ≥ 4, by Lemma 2.7, G[M ′
1] contains circuit. But |∂G(M ′

1)| = |∂G ′′(M ′
1) ∪

{e2}| ≤ 5, a contradiction with n∗
G = 6.

If |M ′
1| = 2, then M ′

1 = L2 = {x4, v2}. Note that v2 is a bivalent vertex in G ′′.
Let u be another neighbor of v2 in G ′′. Then uv2 is an ingoing edge of ∂G ′′(M ′

1) with
ϕ′′(uv2) = 2. Hence |∂−

G ′′(M ′
1)| = 2 since δϕ′′(M ′

1) = 0. Let ∂−
G ′′(M ′

1) = {t1x4, uv2}.
Then ϕ′′(t1x4) = 1. Since u ∈ M1, there is a directed path P(u, v1) from u to v1 in
D(G[S]). Orient the edges e1, e2 appropriately, we can get a nearly directed circuit
C with E(C) = E(P(u, v1)) ∪ E(P(w1, w2)) ∪ {e1, e2} ∪ {uv2} (the edge uv2 has
a reverse direction and ϕ′′(uv2) = 2). Hence we can define a 2-flow ϕ2 on G with
ϕ2(e) = 1 if e ∈ E(C), and ϕ2(e) = 0, otherwise, such that ϕ + ϕ2 is a NWZ 5-flow
on G, again a contradiction with our assumption that G has no NWZ 5-flow.

Nowassume |M ′
1| = 3. LetM ′

1 = {x4, v2, u}. ThenM ′
1 must be a directed path from

u to x4 in G ′′. Since ∂+
G ′′(M ′

1) = { f4} and ϕ′′( f4) = 3, ∂−
G ′′(M ′

1) contains precisely
three ingoing edges with flow value 1. Let ∂−

G ′′(M ′
1) = {t1x4, t2u, t3u} and assume

t3u ∈ E(Cv2).
Let P be the strong connected component in D(G[M1]) containing v1. ThenCv1 ⊆

P and ∂+
G ′′(P) ⊆ {t1x4, t2u, t3u}. If |∂+

G ′′(P)| ≤ 2, then |∂−
G ′′(P)| ≤ 2. Hence ∂G(P)

is a cyclic edge-cut of G with at most five edges, a contradiction with n∗
G = 6. Hence

∂+
G ′′(P) = {t1x4, t2u, t3u} with t1, t2, t3 ∈ V (P) (see Fig. 3).

Claim 8 (1) f3 ∈ E(Cv2).
(2) There are two vertex-disjoint directed paths from {v1, w2} to {t1, t2, t3} in D(G ′′).

Moreover, the two vertex-disjoint directed paths have pairwise different ends.
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Proof (1) It follows directly from the structure of ∂G ′′(S) (Cv2 is a directed circuit in
G ′′ with edges of colors 2 and 3, f3, f4 are the only two edges with color 2 in
∂G ′′(S) and f4 ∈ E(Cv2)).

(2) Suppose to the contrary that there is no two such directed paths in D(G ′′).
By Lemma 2.8, there is a vertex y such that each directed path from {v1, w2}
to {t1, t2, t3} passes through y. Since P is a strong connected component of
D(G[M1]), there is a directed path from v1 to ti (i = 1, 2, 3) in P . Hence
y ∈ V (P) ⊆ S.We claim that y /∈ V (Cv1). If not, then the directed path composed
by the directed path from w2 to y3 in D(G[M3]), and the segment of Cv2 from y3
to t3 in D(G[S]) does not pass through y, a contradiction.
Let Q ⊆ V (P) be the set of vertices such that all the directed paths from v1

to v ∈ Q do not pass through y. Since y is a vertex of degree 3, the vertex y has
only one ingoing edge or only one outgoing edge. If y has only one ingoing edge,
let Q′ = Q \ {y}, then |∂+

G ′′(Q′)| = 1. If y has only one outgoing edge, let Q′ =
Q, then |∂+

G ′′(Q′)| = 1. Hence, in either case, we have |∂−
G ′′(Q′)| ≤ 3. Therefore,

|∂G(Q′)| = |∂G ′′(Q′) ∪ {e1}| ≤ 5. Since y /∈ V (Cv1), V (Cv1) ⊆ Q′. Since Cw2 ∈ S,
V (Cw2) ⊆ Q′. Hence ∂G(Q′) is a cyclic edge-cut with |∂G(Q′)| ≤ 5, a contradiction
with n∗

G ≥ 6.
The two vertex-disjoint directed paths have pairwise different ends follows directly

from the fact that v1, w2 have out-degree 1 and each ti (i = 1, 2, 3) has in-degree 1
(since ti ∈ P) in G ′′. ��

By Claim 8, we have two vertex-disjoint directed paths, one from v1 to ti , say
P(v1, ti ), another one fromw2 to t j (i �= j), say P(w2, t j ), i, j ∈ {1, 2, 3}. ByClaim7,
there is a directed path from y4 tow1, say P(y4, w1) in D(G[M ′

3]). Let P(ti , x4) be the
directed path in D(G[S]) from ti to x4 (P(ti , x4) = ti x4 if i = 1, or ti uv2x4 if i = 2, 3).
Then C1 with E(C1) = E(P(v1, ti )) ∪ E(P(ti , x4)) ∪ { f4} ∪ E(P(y4, w1)) ∪ {e1} is
a directed circuit in G by orienting e1 from w1 to v1. Let ϕ1 be a 2-flow on G with
ϕ1(e) = 1 if e ∈ E(C1), and ϕ1(e) = 0, otherwise.

Let P(t j , v2) = t j x4v2 if j = 1, or t j uv2 if j = 2, 3. Then C2 with E(C2) =
E(P(w2, t j )) ∪ E(P(t j , v2)) ∪ {e2} is a nearly directed circuit in G by orienting e2
from v2 to w2 (x4v2 is the only possible edge with reverse direction on C2). Let ϕ2 be
a 2-flow on G with ϕ2(e) = 1 if e ∈ E(C2), and ϕ2(e) = 0, otherwise.

Since there is no directed path fromw2 tow1 in D(G[S]), P(y4, w1) and P(w2, t j )
are vertex-disjoint in S. Hence C1 and C2 have at most one common edge uv2. Note
that ϕ(uv2) = ϕ(v2x4) = 2. Hence ϕ+ϕ1+ϕ2 is a NWZ 5-flow onG, a contradiction
with the assumption that G has no NWZ 5-flow. ��
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