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a b s t r a c t

We prove that for a simple graph G with |V (G)| ≥ 32, if min{δ(G), δ(Gc )} ≥ 4, then either
G or its complementary graph Gc has flow index strictly less than 3. This is proved by a
newly developed closure operation, which may be useful in studying further flow index
problems. In particular, our result supports a recent conjecture of Li et al. (2018), and
improves a result of Hou et al. (2012) on nowhere-zero 3-flows.
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1. Introduction

Graphs in this paper may contain parallel edges but no loops. We call a graph simple if it contains no parallel edges.
An integer flow of a graph G is an ordered pair (D, f ), where D is an orientation of G and f is a mapping from E(G) to
the set of integers such that the incoming netflow equals the outgoing netflow at every vertex. A flow (D, f ) is called a
nowhere-zero k-flow if f (e) ∈ {±1, ±2, . . . ,±(k − 1)} for every edge e ∈ E(G). Tutte proposed several celebrated flow
conjectures, and the 3-flow conjecture is stated as follows.

Conjecture 1.1 (Tutte’s 3-Flow Conjecture, 1972). Every 4-edge-connected graph has a nowhere-zero 3-flow.

Jaeger [3] in 1979 showed that every 4-edge-connected graph has a nowhere-zero 4-flow. In 2012, Thomassen [9]
made a breakthrough on this conjecture by showing that every 8-edge-connected graph has a nowhere-zero 3-flow. This
was later improved by Lovász, Thomassen, Wu and Zhang [6].

Theorem 1.2 (Lovász et al. [6]). Every 6-edge-connected graph has a nowhere-zero 3-flow.

Besides the edge connectivity conditions, Hou, Lai, Li and Zhang [2] studied the 3-flow property of a graph G and its
complementary graph Gc , providing another evidence to Tutte’s 3-flow conjecture.

Theorem 1.3 (Hou et al. [2]). Let G be a simple graph with |V (G)| ≥ 44. If min{δ(G), δ(Gc)} ≥ 4, then either G or Gc has a
nowhere-zero 3-flow.
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For integers k ≥ 2d > 0, a circular k/d-flow is an integer flow (D, f ) such that f takes values from {±d, ±(d +

1), . . . ,±(k − d)}. When d = 1, this is exactly the nowhere-zero k-flow. The flow index φ(G) of a graph G is the least
rational number r such that G admits a circular r-flow. It was proved in [1] that such an index indeed exists, and the
circular flow satisfies the monotonicity that for any pair of rational numbers r ≥ s, a graph admitting a circular s-flow
has a circular r-flow as well. Thus circular flows are refinements of integer flows.

A modulo 3-orientation is an orientation D of G such that the outdegree is congruent to the indegree modulo 3 at
each vertex. It is well-known that a graph admits a nowhere-zero 3-flow if and only if it admits a modulo 3-orientation
(see [4,11,12]). An orientation is strongly connected if for any two vertices x, y ∈ V (G), there is a directed path from x to
y. The study of flow index strictly less than 3 was initiated in [5] with the following theorems.

Theorem 1.4 ([5]). A connected graph G satisfies φ(G) < 3 if and only if G has a strongly connected modulo 3-orientation.

Theorem 1.5 ([5]). For every 8-edge-connected graph G, the flow index φ(G) < 3.

It is worth noting that (see [4]) if φ(G) ≤ 5/2 for every 9-edge-connected graph G, then Tutte’s 5-Flow Conjecture
follows, that is, φ(G) ≤ 5 for every bridgeless graph G. Since K6 has only one modulo 3-orientation up to isomorphism
which is not strongly connected, we have φ(K6) = 3, and so Theorem 1.5 cannot be extended to 5-edge-connected graphs.
In [5], it was conjectured that the 6-edge-connectivity suffices for φ(G) < 3.

Conjecture 1.6 ([5]). For every 6-edge-connected graph G, the flow index φ(G) < 3.

In this paper, we aim to extend Theorem 1.3 in the theme of flow index φ < 3. Our main result is as follows, providing
further evidence to Conjecture 1.6.

Theorem 1.7. Let G be a simple graph with |V (G)| ≥ 32. If min{δ(G), δ(Gc)} ≥ 4, then min{φ(G), φ(Gc)} < 3.

Theorems 1.2 and 1.3 were proved by using the group connectivity ideas, which allows flow with boundaries. Let G
be a graph, and let Z(G,Z3) = {β : V (G) → Z3 |

∑
v∈V (G) β(v) ≡ 0 (mod 3)}. Given a boundary function β ∈ Z(G,Z3),

an orientation D of G is called a β-orientation if d+

D (v) − d−

D (v) ≡ β(v) (mod 3) for every vertex v ∈ V (G). A graph G is
Z3-connected if G has a β-orientation for every β ∈ Z(G,Z3). It follows from the definition that every Z3-connected graph
admits a modulo 3-orientation and hence has a nowhere-zero 3-flow. In fact, Hou et al. [2] obtained a stronger version
of Theorem 1.3 on Z3-group connectivity.

Theorem 1.8 (Hou et al. [2]). Let G be a simple graph with |V (G)| ≥ 44. If min{δ(G), δ(Gc)} ≥ 4, then either G or Gc is
Z3-connected.

Motivated by Theorem 1.4, we develop a contractible configuration method to handle the flow index φ < 3 problem
in this paper, which is analogous to the Z3-group connectivity.

Definition 1.9. A graph G is strongly connected Z3-contractible if, for every β ∈ Z(G,Z3), there is a strongly connected
orientation D such that d+

D (v) − d−

D (v) ≡ β(v) (mod 3) for every vertex v ∈ V (G). Let S3 denote the family of all strongly
connected Z3-contractible graphs.

A strongly connected Z3-contractible graph is called an S3-graph for convenience. An S3-graph is Z3-connected by
definition; and it has flow index less than 3 by Theorem 1.4. Actually, it was proved in Theorem 4.2 of [5] that G ∈ S3 for
every 8-edge-connected graph G.

In this paper, we shall prove an S3 version of Theorem 1.7. However, a directed S3-property like Theorem 1.8 fails,
and there are some exceptions. A bad attachment of a graph G is an induced subgraph Γ with 3 ≤ |V (Γ )| ≤ 6 and there
are at most 3|V (Γ )| − |E(Γ )| edges between V (Γ ) and V (G) \ V (Γ ) in G. We will see later (Remark 2 in Section 2) that if
a graph G contains a bad attachment, then G /∈ S3. We obtain the S3 version of Theorem 1.7 as follows.

Theorem 1.10. Let G be a simple graph with |V (G)| ≥ 77. If min{δ(G), δ(Gc)} ≥ 4, then one of the following holds:

(i) G ∈ S3 or Gc
∈ S3,

(ii) both G and Gc contain a bad attachment.

Moreover, in case (ii) we have both φ(G) < 3 and φ(Gc) < 3.

In fact, if case (ii) of Theorem 1.10 occurs, we obtain a more detailed characterization of bad attachments in Theorem 3.3
of Section 3. Also, the graph obtained by deleting bad attachment(s) is a special kind of contractible graph for φ < 3
property, to be introduced in Section 2. Furthermore, if we impose the minimal degree condition to min{δ(G), δ(Gc)} ≥ 5,
then an easy counting argument shows that case (ii) of Theorem 1.10 cannot happen; see Theorem 3.3 for more details.
Thus we have the following corollary.

Corollary 1.11. Let G be a simple graph with |V (G)| ≥ 77. If min{δ(G), δ(Gc)} ≥ 5, then G ∈ S3 or Gc
∈ S3.
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In the next section, we will present some preliminaries. The proofs of Theorems 1.7 and 1.10 will be given in Section 3.
We end this section with a few more notation.

Notation. A vertex of degree at least k is called a k+-vertex. Let X , Y be two disjoint subsets of vertices in a graph G.
We denote the set of edges between X and Y in G by EG(X, Y ), and let eG(X, Y ) = |EG(X, Y )|. When X = {x} or Y = {y},
we use EG(x, Y ), EG(X, y), EG(x, y) and EG(u) = EG({u}, V (G) \ {u}) for short. For a vertex set A ⊆ V (G), we denote by G/A
the graph obtained from G by identifying the vertices of A into a single vertex and deleting the resulting loops. For an
edge set B ⊆ E(G), denote by G/B the graph obtained from G by identifying the endpoints of each edge one by one and
deleting the resulting loops. Moreover, we use G/H for G/V (H) when H is a connected subgraph of G.

2. Preliminaries

The following observation comes straightly from Definition 1.9 of an S3-graph. This indicates that the S3-property is
closed under contraction of vertices and addition of edges. It would also be useful for determining some graphs not in S3.

Observation 2.1. Let x, y be two vertices of G. If G ∈ S3, then G + xy ∈ S3 and G/{x, y} ∈ S3. Conversely, if there is a subset
X ⊊ V (G) of vertices such that G/X /∈ S3, then G /∈ S3.

2.1. Contractible configurations and 3-closure operations

Lemma 2.2. Let G be a connected graph with β ∈ Z(G,Z3), and H a connected subgraph of G and G′
= G/H. Define a

boundary function β ′ of G′ as follows.

β ′(v) =

⎧⎨⎩
β(v), if v ∈ V (G/H) \ {vH},∑
x∈V (H)

β(x), if v = vH ,

where vH denotes the vertex by contracting H in G′. Then β ′
∈ Z(G′,Z3).

If H ∈ S3, then every strongly connected β ′-orientation of G′ can be extended to a strongly connected β-orientation of G.
In particular, each of the following statements holds.

(i) If H ∈ S3 and φ(G/H) < 3, then φ(G) < 3.
(ii) If H ∈ S3 and G/H ∈ S3, then G ∈ S3.

Proof. Since
∑

x∈V (G′) β
′(x) =

∑
x∈V (G)\V (H) +

∑
x∈V (H) β(x) ≡ 0 (mod 3), we have β ′

∈ Z(G′,Z3). For a strongly
connected β ′-orientation D′ of G′, it results a β1-orientation D1 of G − E(H) (we may arbitrarily orient the edges in
E(G[V (H)]) \ E(H) here). Define a function β2 : V (H) ↦→ Z3 by β2(v) = β(v) − β1(v) for each v ∈ V (H). Then∑

v∈V (H) β2(v) =
∑

v∈V (H) β(v) −
∑

v∈V (H) β1(v) = β ′(vH ) − (d+

D′ (vH ) − d−

D′ (vH )) ≡ 0 (mod 3), and so β2 ∈ Z(H,Z3).
Since H ∈ S3, there is a strongly connected β2-orientation D2 of H . Now D1 ∪ D2 is a β-orientation of G. Since both D2
and D′

= (D1 ∪ D2)/D2 are strongly connected, D1 ∪ D2 is strongly connected.
(i) If H ∈ S3, then a strongly connected modulo 3-orientation of G/H can be extended to G. Hence (i) follows from

Theorem 1.4.
(ii) Since β is arbitrary, G ∈ S3 by definition. ■

Since a graph with 3-edge-cuts cannot have a strongly connected modulo 3-orientation, it has flow index at least 3 by
Theorem 1.4. So our study of flow index φ < 3 only focuses on 4-edge-connected graphs. A graph H is called (φ < 3)-
contractible if for every 4-edge-connected supergraph G containing H as a subgraph, φ(G) < 3 if and only if φ(G/H) < 3.
Clearly, an S3-graph is (φ < 3)-contractible by (i) of Lemma 2.2. We will show below that a wider class of graphs is also
(φ < 3)-contractible.

Lemma 2.3 ([5]). Let G be a 2-edge-connected graph, and e = xy an edge of G. If G/e has a strongly connected orientation D′,
then D′ can be extended to a strongly connected orientation D of G.

Lemma 2.4. Let G be a 4-edge-connected graph with β ∈ Z(G,Z3) and x, y be a pair of vertices joined by a set E(x, y)
of at least 3 parallel edges. Let G′

= G/E(x, y) and β ′ be the resulting Z3 boundary function, where β ′(v) = β(v) for any
v ∈ V (G) \ {x, y}, and β ′(w) ≡ β(x)+ β(y) (mod 3) for the contracted vertex w. If G′ has a strongly connected β ′-orientation
D′, then D′ can be extended to a strongly connected β-orientation D of G.

Proof. Let e1, e2 be two distinct parallel edges in E(x, y). Then G−e1−e2 is 2-edge-connected since G is 4-edge-connected,
and hence we can extend D′ to a strongly connected orientation of G−e1 −e2 by Lemma 2.3. Note that two parallel edges
e1, e2 are enough to modify the boundaries of the end vertices x, y. Now we appropriately orient e1, e2 to modify the
boundary β(x), β(y). This results in a strongly connected β-orientation D of G. ■
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Remark 1. For a vertex v ∈ V (G) and a boundary β ∈ Z(G,Z3), two edges incident to v are enough to modify β(v).
Specially, when β(v) = 0, orient the two edges oppositely; when β(v) = 1, orient both edges towards v; when β(v) = 2,
orient both edges away from v. If k edges are incident to v (where k ≥ 2), we can first orient k− 2 edges arbitrarily, and
then orient the remaining two edges to achieve β(v). This fact will be frequently used in this paper implicitly.

In particular, Lemma 2.4 indicates that the graph formed by three or more parallel edges is (φ < 3)-contractible.

Definition 2.5. Let H be a connected subgraph of G. The 3-closure of H in G, denoted by cl3(H), is the unique maximal
induced subgraph of G that contains H such that V (cl3(H)) \ V (H) can be ordered as a sequence {v1, v2, . . . , vt} such that
eG(v1, V (H)) ≥ 3 and for each i with 1 ≤ i ≤ t − 1,

eG(vi+1, V (H) ∪ {v1, v2, . . . , vi}) ≥ 3.

Notice that for each vertex v ∈ V (G) \V (cl3(H)), we have eG(v, cl3(H)) ≤ 2 by the definition. The following lemma tells
that if H ∈ S3, then cl3(H) is also (φ < 3)-contractible.

Lemma 2.6. Let G be a 4-edge-connected graph with a subgraph H. Then each of the following statements holds.

(i) If H ∈ S3 and φ(G/cl3(H)) < 3, then φ(G) < 3.
(ii) If H ∈ S3 and G/cl3(H) ∈ S3, then G ∈ S3.

Proof. (i) Let {v1, v2, . . . , vt} be the ordered sequence of V (cl3(H)) \ V (H) as in Definition 2.5. Denote Hi = G[V (H) ∪

{v1, v2, . . . , vt+1−i}] for each 1 ≤ i ≤ t and Ht+1 = H . By Lemma 2.4, we first extend a strongly connected modulo
3-orientation of G/cl3(H) = G/H1 to G/H2. By applying Lemma 2.4 recursively, we can extend a strongly connected modulo
3-orientation of G/Hi to G/Hi+1 for each i = 1, 2, . . . , t . Then we apply Lemma 2.2 to extend this strongly connected
modulo 3-orientation of G/H to a strongly connected modulo 3-orientation of G.

(ii) The proof of (ii) is similar to that of (i) with strongly connected β-orientation replacing strongly connected modulo
3-orientation. ■

2.2. Properties of contractible graphs

By Theorem 4.2 of [5], we have the following theorem.

Theorem 2.7 ([5]). For every 8-edge-connected graph G, G ∈ S3.

A graph is called trivial if it is a singleton K1, and nontrivial otherwise. The following lemma is due to Nash-Williams [8]
in terms of matroids, and a detailed proof can be found in Theorem 2.4 of [10].

Lemma 2.8 (Nash-Williams [8]). Let G be a nontrivial graph and let k > 0 be an integer. If |E(G)| ≥ k(|V (G)| − 1), then G has
a nontrivial subgraph H such that H contains k edge-disjoint spanning trees.

Theorem 2.7 and Lemma 2.8 immediately imply the following lemma, which shows that graphs with enough edges
must have a nontrivial S3-subgraph.

Lemma 2.9. Let G be a simple graph with |E(G)| ≥ 8(|V (G)|−1). Then G has a nontrivial subgraph H ∈ S3 with |V (H)| ≥ 16.

Proof. By Lemma 2.8, G has a nontrivial subgraph H that contains 8 edge-disjoint spanning trees. Clearly, H is 8-edge-
connected, and so H ∈ S3 by Theorem 2.7. If H is a simple graph, then |V (H)| ≥ 16 follows from that H contains 8
edge-disjoint spanning trees. ■

On the other hand, we also show that an S3-graph cannot be too sparse.

Lemma 2.10. If a nontrivial graph G belongs to S3, then |E(G)| ≥ 3|V (G)| − 2.

Proof. Fix a vertex x ∈ V (G), define a boundary function β : V (G) → Z3 by

β(v) ≡

⎧⎨⎩
∑

y∈V (G)\{x}

dG(y) (mod 3), if v = x,

−dG(v) (mod 3), if v ̸= x.
.

Clearly,
∑

v∈V (G) β(v) ≡ 0 (mod 3) and β ∈ Z(G,Z3). Since G ∈ S3, there is a strongly connected β-orientation D of G,
that is, β(v) ≡ d+

D (v) − d−

D (v) = 2d+

D (v) − dG(v) (mod 3) for any vertex v ∈ V (G). For any vertex v ∈ V (G) \ {x}, since
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Fig. 1. The graphs K 1
3 , K

2
3 , K

∗

4 and strongly connected mod 3-orientation of K ∗

4 .

β(v) ≡ −dG(v) (mod 3), we have d+

D (v) ≡ 0 (mod 3), and so d+

D (v) ≥ 3 as a positive integer since D is strongly connected.
Moreover, d+

D (x) ≥ 1 since D is strongly connected. Therefore,

|E(G)| =

∑
v∈V (G)

d+

D (v) = d+

D (x) +

∑
v∈V (G)\{x}

d+

D (v) ≥ 1 + 3(|V (G)| − 1) = 3|V (G)| − 2. ■

Remark 2. If a graph G contains a bad attachment Γ , then for X = V (G) \ V (Γ ), the graph G/X has |V (Γ )| + 1 vertices
and at most 3|V (Γ )| edges. Thus G/X /∈ S3 by Lemma 2.10, and so G /∈ S3 by Observation 2.1.

Now we develop some techniques to find S3-graphs from smaller graphs. For a graph G with a 4+-vertex v and
va, vb ∈ EG(v), define G[v,ab] = G − v + ab as the graph obtained from G by deleting the vertex v and adding a new
edge ab. We refer this operation as splitting edges va, vb to become a new edge ab.

Lemma 2.11. Let v be a 4+-vertex of a graph G with va, vb ∈ EG(v). If G[v,ab] ∈ S3, then G ∈ S3.

Proof. Let β ∈ Z(G,Z3). We first orient all the edges of EG(v) \ {va, vb} to modify the boundary β(v). Note that this is
possible since |EG(v) \ {va, vb}| ≥ 2. Then delete the oriented edges and change the boundaries of the end vertices other
than v. Specifically, for each edge vx ∈ EG(v) \ {va, vb} that we oriented, increase or decrease the boundary function of x
by 1 depending on the orientation of vx that is into x or out of x. This results in a boundary function β ′ of G[v,ab]. Since
G[v,ab] ∈ S3, there exists a strongly connected β ′-orientation D′ of G[v,ab]. By adding those deleted oriented edges and
replacing the edge ab by av, vb with their orientations the same as ab (if a = b, orient av, vb as a directed 2-cycle), we
obtain a strongly connected β-orientation of G. This argument holds for any β ∈ Z(G,Z3), and hence G ∈ S3. ■

Lemma 2.12. Let G be a 4-edge-connected graph and u, v be two adjacent vertices in G. Assume that eG(v, V (G)\ {u, v}) ≥ 3
and let va, vb ∈ E(v, V (G) \ {u, v}). Denote G1 = G − u − v + ab. If G1 ∈ S3, then G ∈ S3.

Proof. If u has just one neighbor v, then there are at least 4 parallel edges between u and v. We denote the graph G/uv
by H . Since H[v,ab] = G1 ∈ S3 and by Lemma 2.11, H ∈ S3. Hence G ∈ S3 by Lemmas 2.4 and 2.6.

So we assume that u has at least two neighbors. Let c ̸= v be a neighbor of u, and H = G − u + vc . Then
H[v,ab] = G − u − v + ab = G1 ∈ S3. Since eG(v, V (G) \ {u, v}) ≥ 3, we know that v is a 4+-vertex of H , and so H ∈ S3 by
Lemma 2.11. Notice that u is a 4+-vertex of G and H = G[u,vc] ∈ S3. Hence G ∈ S3 by Lemma 2.11 again. ■

Remark 3. The condition ‘‘eG(v, V (G) \ {u, v}) ≥ 3’’ in Lemma 2.12 cannot be dropped. If there are exactly two parallel
edges between u and v in G and both u and v have exactly two other edges connecting V (G) \ {u, v}, then this graph G
does not belong to S3 by Observation 2.1.

2.3. Special contractible graphs

Let mK2 be the graph with two vertices and m parallel edges. Let K 1
3 , K

2
3 , and K ∗

4 be the graphs as depicted in Fig. 1.

Lemma 2.13. (i) mK2 ∈ S3 if and only if m ≥ 4.
(ii) K 1

3 , K 2
3 , K ∗

4 ∈ S3.

Proof. (i) By Lemma 2.10, we have that mK2 ∈ S3 implies m ≥ 4. When m ≥ 4, we first orient two of the edges in
the opposite directions to obtain a digon. Then there are at least two edges remaining, and we can use them to modify
the boundaries of end vertices. This gives a strongly connected β-orientation for any given boundary function β , and so
mK2 ∈ S3.

(ii) For K 1
3 , K 2

3 , each of them contains a 3K2, and contracting a 3K2 results a 4K2 ∈ S3. So K 1
3 , K 2

3 ∈ S3 by Lemma 2.4.
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Let β ∈ Z(K ∗

4 ,Z3). If β = 0 at each vertex, then a strongly connected modulo 3-orientation of K ∗

4 is in the last graph of
Fig. 1. Otherwise, without loss of generality, we may assume β(v) = α ∈ {−1, 1}. Consider a graph G1 = K ∗

4 − v + ab+ ac
with boundary β1 such that β1(a) = β(a), β1(b) = β(b) and β1(c) = β(c)+ α. Then β1 ∈ Z(G1,Z3) and G1 ∼= K 1

3 ∈ S3, and
there exists a strongly connected β1-orientation of G1. In K ∗

4 , replace the added edges ab, ac by av, vb and av, vc with
their orientations preserved, respectively. Then orient the remaining edge vc of K ∗

4 from v to c if α = 1, and from c to v
if α = −1. This gives a strongly connected β-orientation of K ∗

4 . Hence K ∗

4 ∈ S3. ■

Now we show that some complete bipartite graphs are in S3. Note that K4,9 has 13 vertices and 36 edges, and so
K4,9 /∈ S3 by Lemma 2.10.

Lemma 2.14. When m ≥ 4 and n ≥ 10, we have Km,n ∈ S3.

Proof. We first show K4,10 ∈ S3. Let (X, Y ) be a bipartition of K4,10 with X = {x1, x2, x3, x4} and Y = {yi|1 ≤ i ≤ 10}. We
apply Lemma 2.11 to delete vertices in Y and add edges in X . For 1 ≤ i ≤ 4, we delete y2i−1, y2i and add two parallel edges
xixi+1, where x5 = x1. Then delete y9, y10 and add edges x1x3, x2x4. Now the remaining graph is isomorphic to K ∗

4 ∈ S3.
By applying Lemma 2.11 recursively, we conclude that K4,10 ∈ S3.

When m ≥ 4 and n ≥ 10, Km,n is 4-edge-connected. Pick a subgraph K4,10 in Km,n. Then it is easy to see that
Km,n = cl3(K4,10). Since K4,10 ∈ S3, we have Km,n ∈ S3 by Lemma 2.6(ii). ■

By Observation 2.1, if a graph G contains Km,n ∈ S3 as a spanning subgraph with m ≥ 4 and n ≥ 10, then G ∈ S3. We
shall prove a similar proposition below when G contains K3,t as a spanning subgraph and t is large (t ≥ 14 suffices).

For an integer t ≥ 4, a 4-edge-connected graph on t + 3 vertices is denoted by K+

3,t if it contains K3,t as a spanning
subgraph.

Lemma 2.15. For t ≥ 14, K+

3,t ∈ S3.

Proof. Let (A, B) be the bipartition of G = K+

3,t with |A| = t, |B| = 3 and E(A, B) contains a complete bipartite graph K3,t .
Denote B = {x, y, z}. Our strategy is to apply Lemmas 2.11 and 2.12 to delete vertices in A and add edges to B such that
part B forms a graph K 1

3 ∈ S3. Note that in part B, we need to add at most 7 edges to form a K 1
3 . In part A, we can delete

a vertex or two adjacent vertices and add any one of xy, xz, yz by using Lemmas 2.11 and 2.12. We will proceed to add
two parallel edges xy, two parallel edges xz and three parallel edges yz. The only concern is that we need to keep the
remaining graph 4-edge-connected.

Let C1, C2, . . . , Cs be all the components of G[A]. Given a component Ci where 1 ≤ i ≤ s. We first note that the
operations of the following cases keep the remaining graph 4-edge-connected. If |V (Ci)| = 1, then it means that there are
parallel edges between V (Ci) and some vertex of B, and we can delete the vertex V (Ci) and add a new edge in B by using
Lemma 2.11. If |V (Ci)| = 2, then there are two adjacent vertices u, v in V (Ci). Clearly, eG(v, B) ≥ 3 and Lemma 2.12 is
applied. In this case we delete V (Ci) and add a new edge in B. If |V (Ci)| ≥ 3, we pick a spanning tree of Ci, and then delete
a pendent vertex in the tree and add a new edge in B by using Lemma 2.11 iteratively, until this component becomes
two adjacent vertices. Now we use Lemma 2.12 to delete this last two vertices and add a new edge in B. In total, all those
operations could add at least∑

|V (Ci)|≥2

(|V (Ci)| − 1) +

∑
|V (Ci)|=1

|V (Ci)| ≥

∑
|V (Ci)|≥2

|V (Ci)|
2

+

∑
|V (Ci)|=1

|V (Ci)| ≥
1
2

s∑
i=1

|V (Ci)| ≥ 7

edges to part B.
Therefore, we can successfully apply these operations to obtain a K 1

3 ∈ S3 in part B, and the resulting graph is 4-edge-
connected and it is formed by cl3(K 1

3 ). Hence it is in S3 by (ii) of Lemma 2.6. By using Lemmas 2.11 and 2.12 recursively,
we can get K+

3,t ∈ S3. ■

As mentioned in the introduction, we have φ(K6) = 3; and there is another 5-edge-connected planar graph 2C5 ·K1 on
6 vertices as in Fig. 2 with flow index exactly 3 (see Section 5 in [5]). We shall show below that 4-edge-connected graphs
with fewer vertices have flow index less than 3.

Lemma 2.16. For a 4-edge-connected graph G on n ≤ 5 vertices, φ(G) < 3.

Proof. When n ≤ 2, it holds by (i) of Lemma 2.13. Suppose that G is a minimal counterexample of the lemma with the
least vertices. Then |V (G)| ≥ 3 and G has no strongly connected modulo 3-orientation.

Mader’s splitting lemma [7] tells that, if G has a vertex v of even degree, then we can split all the edges incident to
v in pairs such that the resulting graph H remains 4-edge-connected. Clearly, a strongly connected modulo 3-orientation
of H extends to a strongly connected modulo 3-orientation of G. And thus we will get a smaller counterexample. So the
degree of each vertex of G must be odd and |V (G)| can only be 4. By Lemma 2.4, G does not contain three parallel edges,
and so each vertex v of G has exactly 3 neighbors. Thus G can only be isomorphic to the graph K ∗

4 , and then G ∈ S3 by
Lemma 2.13, which is a contradiction. ■
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Fig. 2. The graph 2C5 · K1 .

3. Proofs of the main results

Now we are ready to present the proofs of Theorems 1.7 and 1.10. In fact, we shall prove a stronger version of
Theorem 1.10 with complete characterization of the bad attachments, stated as Theorem 3.3. In this section, we always let
G be a simple graph with min{δ(G), δ(Gc)} ≥ 4, where Gc denotes the complement of G. For a vertex set S ⊂ V (G), denote
S̄ = V (G) \ S.

Lemma 3.1. If G has an edge-cut of size at most 3 and |V (G)| ≥ 26, then Gc
∈ S3.

Proof. Let EG(S, S̄) be an edge-cut of size at most 3 in G. Since δ(G) ≥ 4, we have

|S|(|S| − 1) ≥ 2|E(G[S])| ≥ 4|S| − eG(S, S̄) ≥ 4|S| − 3,

which implies |S| ≥ 5. Similarly, we have |S̄| ≥ 5 as well. Since 1
2 |V (G)| ≥ 13, one of S and S̄ has a size at least 13, say

|S̄| ≥ 13.
In Gc , consider the subgraph EGc (S, S̄). It is almost a complete bipartite graph with at most 3 edges deleted. Let Ks,t be

a maximal complete bipartite subgraph of EGc (S, S̄) with s = |S| ≥ 5. Then t ≥ |S̄| − 3 ≥ 10. By Lemma 2.14, Ks,t ∈ S3.
Let S1 = {x ∈ S̄|eGc (x, S) ≤ 3}. Since |S| ≥ 5 and 3 ≥ eG(S̄, S) ≥ eG(S1, S) ≥ |S1||S| − 3|S1|, we have |S1| ≤ 1. Note that
Ks,t (s ≥ 5, t ≥ 10) is 4-edge-connected, and eGc (x, S) ≥ 4 for each x ∈ S̄ \ S1. Thus Gc

− S1 = Gc
[S̄1] is 4-edge-connected.

Since δ(Gc) ≥ 4, the only possible vertex in S1 has at least 4 edges connecting S̄1. This implies that Gc is 4-edge-connected
and Gc

= cl3(Ks,t ). Thus Gc
∈ S3 by Lemma 2.6. ■

Define

Y1 = {Y ⊆ V (G)| ∃H ⊆ G with H ∈ S3 and G[Y ] = cl3(H) in G} and

Y2 = {Y ⊆ V (G)| ∃H ⊆ Gc with H ∈ S3 and Gc
[Y ] = cl3(H) in Gc

}.

Choose Y ∈ Y1 ∪ Y2 with |Y | maximized. (1)

Lemma 3.2. If |V (G)| ≥ 32, then |Y | ≥ |V (G)| − 4.

Proof. If |V (G)| ≥ 32, then one of G,Gc has at least 1
4 |V (G)|(|V (G)| − 1) ≥ 8(|V (G)| − 1) edges. By Lemma 2.9, it contains

a subgraph H ∈ S3 with |V (H)| ≥ 16. Hence |Y | ≥ 16 by (1). Without loss of generality, assume that Y ∈ Y1.
Suppose, to the contrary, that |Ȳ | ≥ 5. Since G[Y ] is a 3-closure of an S3-graph in G, we have

eG(Y , x) ≤ 2 for each vertex x ∈ Ȳ . (2)

We first show the following statement:

for any Y0 ∈ Y2, we have Ȳ ̸⊂ Y0. (3)

If Ȳ ⊂ Y0, then Ȳ0 ⊂ Y . For each y ∈ Ȳ0, we have eGc (y, Y0) ≤ 2, and so eGc (y, Ȳ ) ≤ 2, which gives eG(y, Ȳ ) ≥ |Ȳ | − 2.
Hence, together with (2), we have

2|Ȳ | ≥ eG(Y , Ȳ ) ≥ (|Ȳ | − 2)|Ȳ0|,

which implies that |Ȳ0| ≤ 2|Ȳ |/(|Ȳ | − 2) < 4 since |Ȳ | ≥ 5 by the assumption. Hence |Y0| > |Y | + 1, and it contradicts
the maximality of |Y | in (1). This proves (3).

Then we show the following statement:

|Ȳ | ≥ 15. (4)
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Fig. 3. Characterization of all bad attachments.

In fact, if |Ȳ | < 15, then |Y | ≥ 18 as |V (G)| ≥ 32. Let Z be a subset of Ȳ with |Z | = 4. Denote Y ′
= {y ∈ Y |eG(y, Z) = 0}.

By (2), there are at most 8 vertices in Y that are adjacent to some vertices in Z . So |Y ′
| ≥ |Y | − 8 ≥ 10. This implies that

EGc (Y ′, Z) forms a complete bipartite graph H1 ∼= K|Y ′|,4 ∈ S3 by Lemma 2.14.
Now in Gc , consider the 3-closure of H1, namely cl3(H1). We denote Y1 = V (cl3(H1)) in Gc for convenience. By (2), for

each vertex x ∈ Ȳ , we have eGc (Y ′, x) = |Y ′
| − eG(Y ′, x) ≥ 10 − 2 > 3, and so x ∈ Y1 by definition. Thus Ȳ ⊂ Y1. As

Y1 = V (cl3(H1)) ∈ Y2, it contradicts (3), and hence this proves (4).
Denote X = {y ∈ Y |eG(y, Ȳ ) ≤ 1}. If |X | ≥ 5, we let X1 be a subset of X with |X1| = 5. Let Z1 = {z ∈ Ȳ |eG(X1, z) = 0}.

Then in G there are at most 5 vertices in Ȳ that are adjacent to some vertices in X1. So |Z1| ≥ |Ȳ | − 5 ≥ 10 by (4). Thus
EGc (X1, Z1) forms a complete bipartite graph H2 ∼= K5,|Z1| ∈ S3 by Lemma 2.14. Now consider the 3-closure of H2 in Gc .
Denote Y2 = V (cl3(H2)). By (2), for each vertex z ∈ Ȳ , we have eGc (X1, z) = |X1| − eG(X1, z) ≥ 5 − 2 = 3, and so z ∈ Y2 by
definition. This shows Ȳ ⊂ Y2, a contradiction to (3). Thus we must have |X | ≤ 4.

Since |X | ≤ 4 and |Y | ≥ 16, we let y1, y2 ∈ Y \ X be two distinct vertices, that is, eG(yi, Ȳ ) ≥ 2 for each i = 1, 2.
Denote by ui, vi ∈ Ȳ the two distinct neighbors of yi for each i = 1, 2. Let Z be a subset of Ȳ with |Z | = 4 that contains
{u1, v1} ∪ {u2, v2}. Denote Y ′

= {y ∈ Y |eG(y, Z) = 0}. Then yi ∈ Y \ Y ′ with eG(yi, Z) ≥ 2 for i = 1, 2. By (2), we have

2|Z | ≥ eG(Y \ Y ′, Z) =

2∑
i=1

eG(yi, Z) + eG((Y \ Y ′) \ {y1, y2}, Z) ≥ 4 + (|Y \ Y ′
| − 2),

which implies that |Y \ Y ′
| ≤ 2|Z | − 2 = 6, and so |Y ′

| ≥ |Y | − 6 ≥ 10.
Since |Y ′

| ≥ 10, we have that EGc (Y ′, Z) forms a complete bipartite graph H3 ∼= K|Y ′|,4 ∈ S3 in Gc by Lemma 2.14.
Consider the 3-closure of H3 in Gc , and let Y3 = V (cl3(H3)). By (2), for each vertex x ∈ Ȳ , we have eGc (Y ′, x) =

|Y ′
| − eG(Y ′, x) ≥ 10 − 2 > 3, and hence x ∈ Y3 by definition. Thus we have Ȳ ⊂ Y3, which contradicts (3). This

completes the proof of Lemma 3.2. ■

Proof of Theorem 1.7. By Lemma 3.1, we may assume that both G and Gc are 4-edge-connected. As in (1), we may,
without loss of generality, assume that Y ∈ Y1. Thus G[Y ] = cl3(H) for some subgraph H ∈ S3 in G. Then G/G[Y ] has
at most 5 vertices by Lemma 3.2. Since G/G[Y ] is 4-edge-connected, we have φ(G/G[Y ]) < 3 by Lemma 2.16, and so
φ(G) < 3 by Lemma 2.6(i). This proves Theorem 1.7. ■

We shall prove the following theorem, which is stronger than Theorem 1.10. It provides a complete characterization of
the bad attachments, and it also tells that the graph obtained by deleting bad attachment(s) is formed from the 3-closure
of an S3-graph.

Theorem 3.3. Let G be a simple graph with |V (G)| ≥ 77. If min{δ(G), δ(Gc)} ≥ 4, then one of the following statements holds:
(i) G ∈ S3 or Gc

∈ S3.
(ii) both G and Gc are formed from the 3-closure of an S3-subgraph by adding a bad attachment isomorphic to Fig. 3(c).
(iii) one of G and Gc is formed from the 3-closure of an S3-subgraph by adding a bad attachment isomorphic to Fig. 3(a); the
other is formed from the 3-closure of an S3-subgraph by adding a bad attachment isomorphic to Fig. 3(a)–(j), or by adding two
disjoint bad attachments isomorphic to Fig. 3(a).

Proof of Theorem 1.10 assuming Theorem 3.3. By Remark 2, we know that if G contains a bad attachment, then G /∈ S3.
Now it suffices to prove the ‘‘moreover part’’ of Theorem 1.10. Assume that both G /∈ S3 and Gc /∈ S3. Then both G
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Fig. 4. A single edge added to each of the bad attachments.

and Gc are 4-edge-connected by Lemma 3.1. By Theorem 3.3, G is formed from the 3-closure of a subgraph H ∈ S3 by
adding a bad attachment or two. By the description of the bad attachments in Fig. 3(a)–(j) in Theorem 3.3, G/cl3(H) is a
4-edge-connected graph on at most 5 vertices for Fig. 3(a)–(e), or G/cl3(H) is an Eulerian graph (i.e. every vertex has an
even degree) for Fig. 3(f),(j) and for two disjoint bad attachments as Fig. 3(a), or G/cl3(H) is a 4-edge-connected graph
with two odd vertices for Fig. 3(g),(h),(i). In each case, we have that φ(G/cl3(H)) < 3 by Lemma 2.16 or by constructing a
strongly connected modulo 3-orientation. Thus φ(G) < 3 by Lemma 2.6(i). The same proof works for Gc to show φ(Gc) < 3.
This finishes the proof of Theorem 1.10. ■

Before proving Theorem 3.3, we will show that some more graphs are in S3. Each of these graphs has only one more
edge than the corresponding bad attachment, and any graph obtained from one of them by adding edges is in S3 by
Observation 2.1.

Lemma 3.4. Each of the graphs in Fig. 4 is in S3.

Proof. For each 1 ≤ i ≤ 13, let G = Li be a graph with v, x, b ∈ V (G) as in Fig. 4. Then it is easy to check that G[v,xb] is
4-edge-connected and G[v,xb] = cl3(x), and thus G[v,xb] ∈ S3 by Lemma 2.6 (ii). It follows that G ∈ S3 from Lemma 2.11.

■

Proof of Theorem 3.3. By Lemma 3.1, we may assume that both G and Gc are 4-edge-connected. As in (1), we choose
Y ∈ Y1 ∪ Y2 with |Y | maximized. Without loss of generality, assume Y ∈ Y1. Let X = {x ∈ Y |eG(x, Ȳ ) > 0}. Since Y is a
3-closure, for each vertex x ∈ Ȳ , eG(Y , x) ≤ 2. Thus

|X | ≤ eG(X, Ȳ ) = eG(Y , Ȳ ) ≤ 2|Ȳ |. (5)

Since δ(G) ≥ 4, we also have

4|Ȳ | − |Ȳ |(|Ȳ | − 1) ≤ eG(Y , Ȳ ) ≤ 2|Ȳ |, (6)

which, together with Lemma 3.2, shows that 3 ≤ |Ȳ | ≤ 4. We shall distinguish our discussion according to the value of
|Ȳ |.
Case A. |Ȳ | = 3.

By (6), we have that eG(Y , Ȳ ) = 6 and G[Y ] forms a triangle. Thus this bad attachment of G is isomorphic to Fig. 3(a).
It follows from (5) that |X | ≤ 6. Since |V (G)| ≥ 77, we have |Y \ X | ≥ 68.

In the complementary graph Gc , EGc (Y \X, Ȳ ) forms a complete bipartite graph K3,|Y\X |. Consider the subgraph Gc
[Y \X]

induced by Y \ X in Gc . Let X1 be the set of non-isolated vertices in Gc
[Y \ X]. If |X1| ≥ 14, then Gc

[X1 ∪ Ȳ ] forms a graph
H1 ∼= K+

3,|X1|
∈ S3 by Lemma 2.15. Otherwise, we have |X1| ≤ 13, which implies that there are at least 55 isolated

vertices in Gc
[Y \ X]. Since δ(Gc) ≥ 4 and |Ȳ | = 3, each isolated vertex in Gc

[Y \ X] is connected to X . Since |X | ≤ 6
and |(Y \ X) \ X1| ≥ 55, there exists a vertex x0 ∈ X such that eGc (x0, (Y \ X) \ X1) ≥ 10 by Pigeon-Hole principle. Let
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Fig. 5. Gc
[Z̄] for s = 5.

X0 = {y ∈ Y \ X |eGc (x0, y) > 0}. Then |X0| ≥ 10 and EGc (X0, Ȳ ∪ {x0}) forms a complete bipartite graph H2 = K4,|X0| ∈ S3
by Lemma 2.14. Therefore, we can always find an S3-subgraph H ∈ {H1,H2} in Gc that contains Ȳ . Now consider the
3-closure of H in Gc and let Z = V (cl3(H)). Denote s = |Z̄ |. Since EGc (Y \ X, Ȳ ) forms a complete bipartite graph K3,|Y\X |,
we have Y \ X ⊂ Z , which is Z̄ ⊆ X . Then by (1),

3 = |Ȳ | ≤ s ≤ |X | ≤ 6.

For each vertex x ∈ Z̄ , eGc (Z, x) ≤ 2, and thus eGc (Z, Z̄) ≤ 2s. Since min{δ(G), δ(Gc)} ≥ 4 and eG(Z̄, Ȳ ) ≤ eG(Y , Ȳ ) ≤ 6,
we have s(s − 1) + eGc (Z, Z̄) ≥ 4s and eGc (Z, Z̄) ≥ |Z̄ ||Ȳ | − eG(Z̄, Ȳ ) ≥ 3s − 6. In summary,

max{3s − 6, 5s − s2} ≤ eGc (Z, Z̄) ≤ 2s. (7)

Since 3 ≤ s ≤ 6, we shall discuss the following cases, characterizing all the bad attachments in Theorem 3.3 (iii).

• s = 3.
By (7), we have eGc (Z, Z̄) = 6. Then the only possibility is that Z̄ induces a bad attachment isomorphic to Fig. 3(a)
in Gc .

• s = 4.
Then 6 ≤ eGc (Z, Z̄) ≤ 8 by (7). If eGc (Z, Z̄) = 6, then δ(Gc) ≥ 4 forces that the bad attachment induced by Z̄ is
isomorphic to Fig. 3(b) or (e).
If eGc (Z, Z̄) = 7, then δ(Gc) ≥ 4 forces that Gc

[Z̄] has at least 5 edges. If Gc
[Z̄] ∼= K4, then Gc/cl3(H) ∼= L2 ∈ S3 by

Lemma 3.4, and so Gc
∈ S3 by Lemma 2.6(ii). Hence, Theorem 3.3(i) holds. Otherwise, Gc

[Z̄] has exactly 5 edges, and
the bad attachment induced by Z̄ is isomorphic to Fig. 3(d).
If eGc (Z, Z̄) = 8, then δ(Gc) ≥ 4 implies that Gc

[Z̄] contains a cycle C4. If Gc
[Z̄] ∼= C4, then the bad attachment induced

by Z̄ is isomorphic to Fig. 3(c). Otherwise, Gc
[Z̄] has at least 5 edges, and Gc/cl3(H) contains a subgraph L1 ∈ S3 by

Lemma 3.4. This shows that Gc
∈ S3 by Lemma 2.6(ii), and so Theorem 3.3(i) holds.

• s = 5.
By (7), we have 9 ≤ eGc (Z, Z̄) ≤ 10, and δ(Gc) ≥ 4. This implies that Gc

[Z̄] has minimum degree at least 2. So Gc
[Z̄]

contains one of the graphs C5, K2,3 and hourglass in Fig. 5 as a subgraph.
If eGc (Z, Z̄) = 10, then the bad attachment induced by Z̄ is isomorphic to Fig. 3(f) when Gc

[Z̄] ∼= C5. Assume that
Gc

[Z̄] contains a cycle C5 plus a chord. Then Gc/cl3(H) contains a subgraph L3 ∈ S3 by Lemma 3.4. Therefore, Gc
∈ S3

by Lemma 2.6(ii), and so Theorem 3.3(i) holds. If Gc
[Z̄] contains a subgraph isomorphic to (b) or (c) in Fig. 5, then

Gc/cl3(H) has a subgraph isomorphic to L7 or L10 in Fig. 4. Thus Gc/cl3(H) ∈ S3 by Lemma 3.4, and so Gc
∈ S3 by

Lemma 2.6(ii).
If eGc (Z, Z̄) = 9, then δ(Gc) ≥ 4 further forces that Gc

[Z̄] contains a cycle C5 plus a chord, or a subgraph isomorphic
to (b) or (c) in Fig. 5. When Gc

[Z̄] contains an additional edge, Gc/cl3(H) contains one of L4, L5, L8, L9 and L6 in Fig. 4.
All these graphs are in S3 by Lemma 3.4, and so Gc

∈ S3. Otherwise, the bad attachment induced by Z̄ is isomorphic
to Fig. 3(g), (h) or (i).

• s = 6.
Then eGc (Z, Z̄) = 12 by (7). Since δ(Gc) ≥ 4, Gc

[Z̄] has minimum degree at least 2, and we deduce that Gc
[Z̄] contains

a C6, two disjoint triangles, or a graph in Fig. 6(a)–(c).
When Gc

[Z̄] contains a graph in Fig. 6(a)–(c), Gc/cl3(H) contains a graph F in Fig. 6(i)-(iii). Since F[v,xb] = cl3(x) and it
is 4-edge-connected, we have F[v,xb] ∈ S3 by Lemma 2.6. Then F ∈ S3 by Lemma 2.11, and so Gc

∈ S3 by Lemma 2.6.
If Gc

[Z̄] contains a cycle C6 plus a chord, then Gc/cl3(H) contains L11 or L12 ∈ S3, and so Gc
∈ S3. If Gc

[Z̄] contains two
disjoint triangles plus an additional edge, then Gc/cl3(H) contains L13 ∈ S3. Thus Gc

∈ S3 and Theorem 3.3(i) holds.
Otherwise, the bad attachment induced by Z̄ is isomorphic to Fig. 3(j), or two disjoint bad attachments isomorphic
to Fig. 3(a).

Case B. |Ȳ | = 4.
By (5), we have |X | ≤ 8, and so |Y \ X | = |Y | − |X | ≥ 61 > 10. Then in Gc , EGc (Y \ X, Ȳ ) forms a complete bipartite

graph H ∼= K4,|Y\X | ∈ S3 by Lemma 2.14. Consider the 3-closure of H in Gc and let Z = V (cl3(H)). Then Ȳ ⊂ Z and Z̄ ⊆ X .
For each vertex x ∈ Z̄ , we have eGc (x, Ȳ ) ≤ eGc (x, Z) ≤ 2 by definition, and so

eGc (Z̄, Ȳ ) ≤ 2|Z̄ |.
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Fig. 6. The graphs for s = 6.

On the other hand, we have eG(Z̄, Ȳ ) ≤ eG(X, Ȳ ) ≤ 2|Ȳ | = 8 by (5), and hence

eGc (Z̄, Ȳ ) = |Z̄ ||Ȳ | − eG(Z̄, Ȳ ) ≥ 4|Z̄ | − 8.

Thus 4|Z̄ | − 8 ≤ 2|Z |, i.e., |Z̄ | ≤ 4. By the maximality of Y in (1), we must have |Z̄ | = 4. Therefore, all the inequalities
above are exactly equalities. Thus we have eG(Y , Ȳ ) = eG(Z̄, Ȳ ) = 8 and eGc (Z, Z̄) = eGc (Ȳ , Z̄) = 8.

Now we will adapt the same argument as in the proof for s = 4 in Case A. Notice that G[Ȳ ] contains a cycle C4 since
δ(G) ≥ 4. If G[Ȳ ] has at least 5 edges, then G/G[Y ] contains a subgraph L1 ∈ S3 by Lemma 3.4. This shows that G ∈ S3 by
Lemma 2.6(ii), and so Theorem 3.3(i) holds. Otherwise, G[Ȳ ] is exactly a cycle C4. Then in G the bad attachment induced
by Ȳ is isomorphic to Fig. 3(c). Analogously, either Gc/cl3(H) ∈ S3 or the bad attachment of Gc induced by Z̄ is isomorphic
to Fig. 3(c). This completes the proof of Theorem 3.3. ■
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