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CIRCULAR FLOWS IN PLANAR GRAPHS\ast 

DANIEL W. CRANSTON\dagger AND JIAAO LI\ddagger 

Abstract. For integers a \geq 2b > 0, a circular a/b-flow is a flow that takes values from \{ \pm b,\pm (b+
1), . . . ,\pm (a - b)\} . The Planar Circular Flow Conjecture states that every 2k-edge-connected planar
graph admits a circular (2 + 2

k
)-flow. The cases k = 1 and k = 2 are equivalent to the Four

Color Theorem and Gr\"otzsch's 3-Color Theorem. For k \geq 3, the conjecture remains open. Here
we make progress when k = 4 and k = 6. We prove that (i) every 10-edge-connected planar graph
admits a circular 5/2-flow and (ii) every 16-edge-connected planar graph admits a circular 7/3-
flow. The dual version of statement (i) on circular coloring was previously proved by Dvo\v r\'ak and
Postle [Combinatorica, 37 (2017), pp. 863--886], but our proof has the advantages of being much
shorter and avoiding the use of computers for case-checking. Further, it has new implications for
antisymmetric flows. Statement (ii) is especially interesting because the counterexamples to Jaeger's
original Circular Flow Conjecture are 12-edge-connected nonplanar graphs that admit no circular
7/3-flow. Thus, the planarity hypothesis of (ii) is essential.

Key words. circular flow, circular coloring, planar, modulo orientation, strongly \BbbZ 5 connected,
strongly \BbbZ 7 connected
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1. Introduction.

1.1. Planar circular flow conjecture. For integers a \geq 2b > 0, a circular
a/b-flow1 is a flow that takes values from \{ \pm b,\pm (b+ 1), . . . ,\pm (a - b)\} . In this paper
we study the following conjecture, which arises from Jaeger's Circular Flow Conjec-
ture [9].

Conjecture 1.1 (Planar Circular Flow Conjecture). Every 2k-edge-connected
planar graph admits a circular (2 + 2

k )-flow.

When k = 1 this conjecture is the flow version of the Four Color Theorem. It is
true for planar graphs (by the Four Color Theorem) but false for nonplanar graphs
because of the Petersen graph and all other snarks. Tutte's 4-Flow Conjecture, from
1966, claims that Conjecture 1.1 extends to every graph with no Petersen minor.
When k = 2, Conjecture 1.1 is the dual of Gr\"otzsch's 3-Color Theorem. Tutte's 3-
Flow Conjecture, from 1972, asserts that it extends to all graphs (both planar and
nonplanar). In 1981 Jaeger further extended Tutte's Flow Conjectures by proposing
a general Circular Flow Conjecture: for each even integer k \geq 2, every 2k-edge-
connected graph admits a circular (2 + 2

k )-flow. That is, he believed Conjecture 1.1
extends to all graphs for all even k. A weaker version of Jaeger's conjecture was
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1Jaeger [9] showed that if p, q, r, s \in \BbbZ + and p/q = r/s, then each graph G has a circular p/q-flow
if and only if it has a circular r/s-flow. (See [7] for more details.) We use this result implicitly in
the present paper.
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proved by Thomassen [19] for graphs with edge connectivity at least 2k2 + k. This
edge connectivity condition was substantially improved by Lov\'asz, Thomassen, Wu,
and Zhang [13].

Theorem 1.2 (Lov\'asz et al. [13]). For each even integer k \geq 2, every 3k-edge-
connected graph admits a circular (2 + 2

k )-flow.

In contrast, Jaeger's Circular Flow Conjecture was recently disproved for all k \geq 6.
In [8], for each even integer k \geq 6, the authors construct a 2k-edge-connected nonpla-
nar graph admitting no circular (2+ 2

k )-flow. And for large odd integers k, we can also
modify the construction in [8] to get 2k-edge-connected nonplanar graphs admitting
no circular (2 + 2

k )-flow. Thus, the planarity hypothesis of Conjecture 1.1 seems es-
sential. The case k = 4 of Jaeger's Circular Flow Conjecture, which remains open, is
particularly important, since Jaeger [9] observed that if every 9-edge-connected graph
admits a circular 5/2-flow, then Tutte's celebrated 5-Flow Conjecture follows.

Our main theorems improve on Theorem 1.2, restricted to planar graphs, when
k \in \{ 4, 6\} .

Theorem 1.3. Every 10-edge-connected planar graph admits a circular 5/2-flow.

Theorem 1.4. Every 16-edge-connected planar graph admits a circular 7/3-flow.

The dual version of Theorem 1.3, on circular coloring, was proved by Dvo\v r\'ak and
Postle [5] (improving on earlier work of Borodin et al.). In fact, their coloring result
holds for a larger class of graphs that includes some sparse nonplanar graphs, as well
as all planar graphs with girth at least 10. However, our proof is much shorter and
avoids using computers for case-checking. Our proof also has new implications for
antisymmetric flows (see Theorem 2.4 below). Theorem 1.4 is especially interesting
because the counterexamples in [8] to Jaeger's original circular flow conjecture are
12-edge-connected nonplanar graphs that admit no circular 7/3-flow. After submit-
ting this paper, we learned that Postle and Smith-Roberge [17] independently proved
Theorem 1.4 ([18] is an extended abstract).

1.2. Circular flows and modulo orientations. Graphs in this paper are finite
and can have multiple edges but no loops. Our notation is mainly standard. For a
graph G, we write | G| for | V (G)| and write \| G\| for | E(G)| . Let \delta (G) denote the
minimum degree in a graph G. A k-vertex is a vertex of degree k. For disjoint vertex
subsets X and Y , let [X,Y ]G denote the set of edges in G with one endpoint in each
of X and Y . Let Xc = V (G) \setminus X, and let d(X) = | [X,Xc]| . For vertices v and w, let
\mu (vw) = | [\{ v\} , \{ w\} ]G| and \mu (G) = maxv,w\in V (G) \mu (vw).

To lift a pair of edges w1v, vw2 incident to a vertex v in a graph G means to delete
w1v and vw2 and create a new edge w1w2. To contract an edge e inGmeans to identify
its two endpoints and then delete the resulting loop. For a subgraph H of G, we write
G/H to denote the graph formed from G by successively contracting the edges of
E(H). The lifting and contraction operations are used frequently in this paper.

An orientationD of a graphG is amodulo (2p+1)-orientation if d+D(v) - d - D(v) \equiv 0
(mod 2p+ 1) for each v \in V (G). By the following lemma of Jaeger [9], this problem
is equivalent to finding circular flows (for a short proof, see [21, Theorem 9.2.3]).

Lemma 1.5 (Jaeger [9]). A graph admits a circular (2 + 1
p )-flow if and only if it

has a modulo (2p+ 1)-orientation.

To prove our results, we study modulo orientations. Let G be a graph. A function
\beta : V (G) \mapsto \rightarrow \BbbZ 2p+1 is a \BbbZ 2p+1-boundary if

\sum 
v\in V (G) \beta (v) \equiv 0 (mod 2p + 1). Given

a \BbbZ 2p+1-boundary \beta , a (\BbbZ 2p+1, \beta )-orientation is an orientation D such that d+D(v) - 
d - D(v) \equiv \beta (v) (mod 2p + 1) for each v \in V (G). When such an orientation exists,
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we say that the boundary \beta is achievable. If \beta (v) = 0 for all v \in V (G), then a
(\BbbZ 2p+1, \beta )-orientation is simply a modulo (2p+1)-orientation. As defined in [10, 11],
a graph G is strongly \BbbZ 2p+1-connected if for any \BbbZ 2p+1-boundary \beta , the graph G
admits a (\BbbZ 2p+1, \beta )-orientation. When the context is clear, we may simply write \beta -
orientation for (\BbbZ 2p+1, \beta )-orientation. Suppose we are given a graph G, an integer p,
a \BbbZ 2p+1-boundary \beta for G, and a connected subgraph H \subsetneq G. We form G\prime from G
by contracting H; that is, G\prime = G/H. Let w denote the new vertex in G\prime , formed
by contracting E(H). Define \beta \prime for G\prime by \beta \prime (v) = \beta (v), for each v \in V (G\prime ) \setminus \{ w\} ,
and \beta \prime (w) =

\sum 
v\in V (H) \beta (v) (mod 2p + 1). Note that \beta \prime is a \BbbZ 2p+1-boundary for G\prime .

The motivation for generalizing modulo orientations is the following observation of
Lai [10], which is also applied in Thomassen et al. [19, 13].

Lemma 1.6 (Lai [10]). Let G be a graph with a subgraph H, and let G\prime = G/H.
Let \beta and \beta \prime be \BbbZ 2p+1 boundaries (respectively) of G and G\prime , as defined above. If
H is strongly \BbbZ 2p+1-connected, then every \beta \prime -orientation of G\prime can be extended to a
\beta -orientation of G. In particular, each of the following holds.

(i) If H is strongly \BbbZ 2p+1-connected and G/H has a modulo (2p+1)-orientation,
then G has a modulo (2p+ 1)-orientation.

(ii) If H and G/H are strongly \BbbZ 2p+1-connected, then G is also strongly \BbbZ 2p+1-
connected.

Proof. We prove the first statement, since it implies (i) and (ii). Fix a \beta \prime -
orientation of G\prime . This yields an orientation D of the subgraph G  - E(G[V (H)]).
By orienting arbitrarily each edge in E(G[V (H)]) \setminus E(H), we obtain a \beta \prime \prime -orientation
D1 of G - E(H), for some \beta \prime \prime . For each v \in V (H), let \gamma (v) = \beta (v) - \beta \prime \prime (v). It is easy
to check that \gamma is a \BbbZ 2p+1-boundary of H. Since H is strongly \BbbZ 2p+1-connected, H
has a \gamma -orientation D2. Hence D1 \cup D2 is a \beta -orientation of G.

Proof outline for main results. To prove Theorems 1.3 and 1.4, we actu-
ally establish two stronger, more technical results on orientations; namely, we prove
Theorems 2.2 and 3.3. Lemma 1.6 shows that strongly \BbbZ 2p+1-connected graphs are
contractible configurations when we are looking for modulo orientations. To prove
Theorems 2.2 and 3.3, we use lifting and contraction operations to find many more re-
ducible configurations. These configurations eventually facilitate a discharging proof.
The proofs of Theorems 1.3 and 1.4 are similar, though the latter is harder. In the
next section we just discuss Theorem 1.3, but most of the key ideas are reused in the
proof of Theorem 1.4.

2. Circular 5/2-flows: Proof of Theorem 1.3. In this section, we focus on
modulo 5-orientations and prove Theorem 1.3.

2.1. Modulo 5-orientations and antisymmetric \BbbZ \bffive -flows. To prove The-
orem 1.3, we will first present a more technical result, Theorem 2.2, which yields
Theorem 1.3 as an easy corollary (as we show below in Theorem 2.5). The hypoth-
esis in Theorem 2.2 uses a weight function w, which is motivated by the following
Spanning Tree Packing Theorem of Nash-Williams [14] and Tutte [20]: a graph G
has k edge-disjoint spanning trees if and only if every partition \scrP = \{ P1, P2, . . . , Pt\} 
satisfies

\sum t
i=1 d(Pi) - 2k(t - 1) \geq 0. This condition is necessary, since in a partition

with t parts, each spanning tree has at least t  - 1 edges between parts. It is shown
in [12, Proposition 3.9] that if G is strongly \BbbZ 2p+1-connected, then it contains 2p edge-
disjoint spanning trees (although this necessary condition is not always sufficient). To
capture this idea, we define the following weight function.
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t t
3K2

t t
2K2

t t
t

T2,2,3

t t
t

T1,3,3

Fig. 1. The graphs 3K2, 2K2, T2,2,3, T1,3,3.

Definition 2.1. Let \scrP = \{ P1, P2, . . . , Pt\} be a partition of V (G). Let

wG(\scrP ) =

t\sum 
i=1

d(Pi) - 11t+ 19

and
w(G) = min\{ wG(\scrP ) : \scrP is a partition of V (G)\} .

Let Ta,b,c denote a 3-vertex graph (triangle) with its pairs of vertices joined by a,
b, and c parallel edges; let aH denote the graph formed from H by replacing each edge
with a parallel edges. For example, w(3K2) = 3, w(2K2) = 1, w(T2,2,3) = w(T1,3,3) =
0; see Figure 1. For each of these four graphs the minimum in the definition of w(G) is
attained only by the partition with each vertex in its own part. We typically assume
V (Ta,b,c) = \{ v1, v2, v3\} and d(v1) \leq d(v2) \leq d(v3).

Let \scrT = \{ 2K2, 3K2, T2,2,3, T1,3,3\} . Each graph G \in \scrT (see Figure 1) is not
strongly \BbbZ 5-connected, since there exists some \BbbZ 5-boundary \beta for which G has no
\beta -orientation. A short case analysis shows that none of the following boundaries are
achievable. For 3K2, let \beta (v1) = \beta (v2) = 0. For 2K2, let \beta (v1) = 1 and \beta (v2) = 4.
For T2,2,3, let \beta (v1) = 1 and \beta (v2) = \beta (v3) = 2. For T1,3,3, let \beta (v1) = \beta (v2) = 1 and
\beta (v3) = 3.

Now suppose that G has a partition \scrP such that G/\scrP \in \scrT , where the vertices
in each Pi are identified to form vi. To construct a \BbbZ 5-boundary \gamma for which G has
no \gamma -orientation, we assign boundary \gamma so that

\sum 
v\in Pi

\gamma (v) \equiv \beta (vi). Hence G has
no \gamma -orientation precisely because G/\scrP has no \beta -orientation. We call a partition \scrP 
troublesome if G/\scrP \in \scrT = \{ 2K2, 3K2, T2,2,3, T1,3,3\} . The main result of section 2 is
Theorem 2.2.

Theorem 2.2. Let G be a planar graph and \beta be a \BbbZ 5-boundary of G. If w(G) \geq 
0, then G admits a (\BbbZ 5, \beta )-orientation, unless G has a troublesome partition.

Before proving Theorem 1.3, we prove a slightly weaker result, assuming the truth
of Theorem 2.2.

Theorem 2.3. If G is an 11-edge-connected planar graph, then G is strongly \BbbZ 5-
connected.

Proof. Let G be an 11-edge-connected planar graph. Fix a partition \scrP . Since
G is 11-edge-connected, d(Pi) \geq 11 for each i, which implies wG(\scrP ) \geq 19. Thus
w(G) \geq 19. Since it is easy to see each troublesome partition \scrP has w(G/\scrP ) \leq 3, we
obtain that G has no partition \scrP such that G/\scrP is troublesome. Now Theorem 2.2
implies that G is strongly \BbbZ 5-connected.

An antisymmetric \BbbZ 5-flow in a directed graphD = D(G) is a \BbbZ 5-flow such that no
two edges have flow values summing to 0. One example is any \BbbZ 5-flow that uses only
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values 1 and 2. Esperet, de Verclos, Le, and Thomass\'e [6] proved that if a graph G
is strongly \BbbZ 5-connected, then every orientation D(G) of G admits an antisymmetric
\BbbZ 5-flow. Together with work of Lov\'asz et al. [13], this implies that every directed 12-
edge-connected graph admits an antisymmetric \BbbZ 5-flow. Esperet et al. [6] conjectured
the stronger result that every directed 8-edge-connected graph admits an antisymmetric
\BbbZ 5-flow. The concept of antisymmetric flows and its dual, homomorphisms to oriented
graphs, were introduced by Ne\v set\v ril and Raspaud [16]. In [15], Ne\v set\v ril, Raspaud,
and Sopena showed that every orientation of a planar graph of girth at least 16 has a
homomorphism to an oriented simple graph on at most 5 vertices. The girth condition
is reduced to 14 in [4], to 13 in [3], and finally to 12 in [2]. By duality, the results
of [16], [6], and [13] combine to imply that girth 12 suffices. After the girth 12 result
of Borodin, Ivanova, and Kostochka [2] in 2007, Esperet et al. [6] remarked that ``it
is not known whether the same holds for planar graphs of girth at least 11."" Note
that the result of Dvo\v r\'ak and Postle [5] does not seem to apply to homomorphisms
to oriented graphs. By Theorem 2.3, we improve this girth bound for planar graphs.

Theorem 2.4. Every directed 11-edge-connected planar graph admits an antisym-
metric \BbbZ 5-flow. Dually, every orientation of a planar graph of girth at least 11 has a
homomorphism to an oriented simple graph on at most 5 vertices.

A graph G has odd edge-connectivity t if the smallest edge cut of odd size has
size t. Our strongest result on modulo 5-orientations is the following, which includes
Theorem 1.3 as a special case.

Theorem 2.5. Every odd-11-edge-connected planar graph admits a modulo 5-
orientation. In particular, every 10-edge-connected planar graph admits a modulo
5-orientation (and thus a circular 5/2-flow).

Proof. The second statement follows from the first, by Lemma 1.5. To prove the
first, suppose the theorem is false, and let G be a counterexample minimizing \| G\| .
By Zhang's Splitting Lemma2 for odd edge-connectivity [22], we know \delta (G) \geq 11.
If G is 11-edge-connected, then we are done by Theorem 2.3; so assume it is not.
Choose a smallest set W \subset V (G) such that d(W ) < 11. Note that | W | \geq 2, and
every proper subset W \prime \subsetneq W satisfies d(W \prime ) \geq 11. Let H = G[W ]. For any partition
\scrP = \{ P1, P2, . . . , Pt\} of H with t \geq 2, we know that dG(Pi) \geq 11 by the minimality
of W , since Pi \subsetneq W . This implies

wH(\scrP ) =

t\sum 
i=1

dH(Pi) - 11t+ 19

=

t\sum 
i=1

dG(Pi) - dG(W
c) - 11t+ 19

> 11t - 11 - 11t+ 19 \geq 8.

Thus w(H) \geq 9, which implies H is strongly \BbbZ 5-connected by Theorem 2.2. By the
minimality of G, the graph G/H has a modulo 5-orientation. By Lemma 1.6, this
extends to a modulo 5-orientation of G, which completes the proof.

2This says that if G has a vertex v with d(v) /\in \{ 2, 11\} , then we can lift a pair of edges incident
to v that are successive in the circular order around v, and the resulting graph is still planar and
odd-11-edge-connected. For example, if d(v) = 10, then all edges incident to v will be lifted in pairs,
so the boundary value at v in the resulting orientation will be 0. This is why the proof yields a
modulo 5-orientation but does not show that G is strongly \BbbZ 5-connected.

D
ow

nl
oa

de
d 

02
/1

9/
20

 to
 2

21
.2

38
.2

45
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Daniel W. Cranston and Jiaao Li

502 DANIEL W. CRANSTON AND JIAAO LI

2.2. Reducible configurations and partitions. To prove Theorem 2.2, we
assume the result is false and study a minimal counterexample. In the next sub-
section we prove many structural results about the minimal counterexample, which
ultimately imply it cannot exist. In this subsection we prove that a few small graphs
cannot appear as subgraphs of the minimal counterexample. We call such a forbidden
subgraph reducible. By Lemma 1.6, to show that H is reducible it suffices to show H
is strongly \BbbZ 5-connected.

Let G be a graph. We often lift a pair of edges w1v, vw2 incident to a vertex
v in G to form a new graph G\prime . That is, we delete w1v and vw2 and create a new
edge w1w2. If G

\prime is strongly \BbbZ k-connected, then so is G, since from any \beta -orientation
of G\prime we delete the edge w1w2 and add the directed edges w1v and vw2 to obtain a
\beta -orientation of G. To prove G is strongly \BbbZ k-connected, we use lifting in two similar
ways.

First, we lift some edge pairs to create a G\prime that contains a strongly \BbbZ k-connected
subgraph H. If G\prime /H is strongly \BbbZ k-connected, then so is G\prime by Lemma 1.6. As
discussed in the previous paragraph, so is G. Second, given a \BbbZ k-boundary \beta , we
orient some edges incident to a vertex v to achieve \beta (v). For each edge vw that
we orient, we increase or decrease by 1 the value of \beta (w). Now we delete v and all
oriented edges and lift the remaining edges incident to v (in pairs). Call the resulting
graph and boundary G\prime and \beta \prime . If G\prime has a \beta \prime -orientation, then G has a \beta -orientation.
We call these lifting reductions of the first and second type, respectively. In this paper
whenever we lift an edge pair vw, wx we require that edge vx already exists. Thus,
our lifting reductions always preserve planarity.

Lemma 2.6. Each of the graphs 4K2, T2,3,3, 2K4, and 3C4, shown in Figure 2, is
strongly \BbbZ 5-connected.

Proof. Proving the lemma amounts to checking a finite list of cases. So our goal
is to make this as painless as possible. Throughout we fix a \BbbZ 5-boundary \beta and
construct an orientation that achieves \beta .

Let G = 4K2 and V (G) = \{ v1, v2\} . To achieve \beta (v1) \in \{ 0, 1, 2, 3, 4\} the number
of edges we orient out of v1 is (respectively) 2, 0, 3, 1, 4.

Let G = T2,3,3 and V (G) = \{ v1, v2, v3\} with d(v1) = d(v2) = 5 and d(v3) = 6. If
\beta (v1) \not = 0, then we achieve \beta by orienting 3 edges incident to v1 and lifting a pair of
unused, nonparallel edges incident to v1 to create a fourth edge v2v3. Since 4K2 is
strongly \BbbZ 5-connected, we can use the resulting 4 edges to achieve \beta (v2) and \beta (v3).
(This is a lifting reduction of the second type. In what follows, we are less explicit
about such descriptions.) So we assume that \beta (v1) = 0 and, by symmetry, \beta (v2) = 0.
This implies \beta (v3) = 0. Now we orient all edges from v1 to v3, from v1 to v2, and
from v3 to v2.

t t
4K2

t t
t

T2,3,3

t t

t
t

2K4 3C4

t t
t t

Fig. 2. The graphs 4K2, T2,3,3, 2K4, 3C4.

D
ow

nl
oa

de
d 

02
/1

9/
20

 to
 2

21
.2

38
.2

45
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Daniel W. Cranston and Jiaao Li

CIRCULAR FLOWS IN PLANAR GRAPHS 503

Let G = 2K4 and V (G) = \{ v1, v2, v3, v4\} . If \beta (v1) \in \{ 0, 2, 3\} , then we achieve
\beta (v1) by orienting two nonparallel edges incident to v1. Now we lift two pairs of
unused edges incident to v1 to get a T2,3,3. Since T2,3,3 is strongly \BbbZ 5-connected,
we are done by Lemma 1.6. So assume \beta (v1) /\in \{ 0, 2, 3\} . By symmetry, we assume
\beta (vi) \in \{ 1, 4\} for all i. Since \beta is a \BbbZ 5-boundary, we further assume \beta (vi) = 1 when
i \in \{ 1, 2\} and \beta (vj) = 4 when j \in \{ 3, 4\} . Let V1 = \{ v1, v2\} and V2 = \{ v3, v4\} . Orient
all edges from V2 to V1. For each pair of parallel edges within V1 or V2, orient one
edge in each direction. This achieves \beta .

Let G = 3C4 and V (G) = \{ v1, v2, v3, v4\} with v1, v3 \in N(v2) \cap N(v4). If \beta (v1) \in 
\{ 0, 2, 3\} , then we achieve \beta (v1) by orienting two nonparallel edges incident to v1 and
lifting two pairs of edges incident to v1. The resulting unoriented graph is T2,3,3, so
we are done by Lemma 1.6. Assume instead, by symmetry, that \beta (vi) \in \{ 1, 4\} for all
i. Since \beta is a \BbbZ 5-boundary, two vertices vi have \beta (vi) = 1, and two vertices vj have
\beta (vj) = 4. By symmetry, assume \beta (v1) = 1. If \beta (v3) = 1, then orient all edges out
from v1 and v3. Assume instead, by symmetry, that \beta (v2) = 1; now reverse one edge
v3v2 from the previous orientation.

Definition 2.7. For partitions \scrP = \{ P1, P2, . . . , Pt\} and \scrP \prime = \{ P \prime 
1, P

\prime 
2, . . . , P

\prime 
s\} ,

we say that \scrP \prime is a refinement of \scrP , denoted by \scrP \prime \preceq \scrP , if \scrP \prime is obtained from \scrP 
by further partitioning Pi into smaller sets for some Pi's in \scrP . More formally, we
require that for every P \prime 

j \in \scrP \prime , there exists Pi \in \scrP such that P \prime 
j \subseteq Pi.

Since partitions are central to our theorems and proofs, we name a few common
types of them. A partition \scrP = \{ P1, P2, . . . , Pt\} is trivial if each part Pi is a singleton,
i.e., V (G) is partitioned into | G| parts; otherwise \scrP is nontrivial. A trivial partition
is minimal under the relation \prec . A partition \scrP = \{ P1, P2, . . . , Pt\} is almost trivial if
t = | G|  - 1 and there is a unique part Pi with | Pi| = 2. A partition \scrP is called normal
if it is neither trivial nor almost trivial and \scrP \not = \{ V (G)\} .

Given a partition \scrP of V (G) and a partition \scrQ of G[P1], the following lemma
relates the weights of \scrP , \scrQ , and the refinement \scrQ \cup (\scrP \setminus \{ P1\} ).

Lemma 2.8. Let \scrP = \{ P1, P2, . . . , Pt\} be a partition of V (G) with | P1| > 1. Let
H = G[P1], and let \scrQ = \{ Q1, Q2, . . . , Qs\} be a partition of V (H). Now \scrQ \cup (\scrP \setminus \{ P1\} )
is a refinement of \scrP satisfying

wG(\scrQ \cup (\scrP \setminus \{ P1\} )) = wH(\scrQ ) + wG(\scrP ) - 8.(2.1)

Proof. Clearly, \scrQ \cup (\scrP \setminus \{ P1\} ) is a refinement of \scrP , and it follows from Definition
2.1 that

wG(\scrQ \cup (\scrP \setminus \{ P1\} )) =
s\sum 

i=1

dG(Qi) +

t\sum 
j=2

dG(Pj) - 11(s+ t - 1) + 19

=

\Biggl[ 
s\sum 

i=1

dG(Qi) - dG(P1) - 11s+ 19

\Biggr] 
+

\Biggl[ 
t\sum 

j=1

dG(Pj) - 11(t - 1)

\Biggr] 

=

\Biggl[ 
s\sum 

i=1

dH(Qi) - 11s+ 19

\Biggr] 
+

\Biggl[ 
t\sum 

j=1

dG(Pj) - 11t+ 19

\Biggr] 
 - (19 - 11)

= wH(\scrQ ) + wG(\scrP ) - (19 - 11).D
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2.3. Properties of a minimal counterexample to Theorem 2.2. Let G be
a counterexample to Theorem 2.2 that minimizes | G| +\| G\| . Thus Theorem 2.2 holds
for all graphs smaller than G. This implies the following lemma, which we will use
frequently.

Lemma 2.9. If H is a planar graph with w(H) \geq 0 and | H| + \| H\| < | G| + \| G\| ,
then each of the following holds.

(a) If wH(\scrP ) \geq 4 for every nontrivial partition \scrP , then H is strongly \BbbZ 5-connected
unless H \in \{ 2K2, 3K2, T1,3,3, T2,2,3\} .

(b) If w(H) \geq 1 and H is 4-edge-connected, then H is strongly \BbbZ 5-connected.
(c) If w(H) \geq 4, then H is strongly \BbbZ 5-connected.

Proof. To prove each part, we fix a \BbbZ 5-boundary \beta and apply Theorem 2.2 to H.
Notice that each troublesome partition \scrP satisfies w(G/\scrP ) \leq 3. So for (a), only the
trivial partition can be troublesome. Thus, H is strongly \BbbZ 5-connected unless H \in 
\{ 2K2, 3K2, T1,3,3, T2,2,3\} . For (b), G has no partition \scrP with G/\scrP \in \{ 2K2, 3K2\} since
G is 4-edge-connected. And G has no partition \scrP with G/\scrP \in \{ T1,3,3, T2,2,3\} since
w(H) \geq 1. So H is again strongly \BbbZ 5-connected, by Theorem 2.2. Finally, (c) follows
from (b), since if H has an edge cut [X,Xc] of size at most 3, then wH(\{ X,Xc\} ) \leq 
2(3) - 11(2) + 19 = 3, which contradicts our assumption that w(H) \geq 4.

The main idea of our proof is to show that the value of the weight function
wG(\scrP ) is relatively large for each nontrivial partition \scrP . This enables us to slightly
modify certain proper subgraphs and still apply Lemma 2.9 to the resulting graph H.
This added flexibility (to slightly modify the subgraph) helps us to prove that more
subgraphs are reducible. In the next section, these forbidden subgraphs facilitate a
discharging proof that shows that our minimal counterexample G cannot exist.

Claim 1. G has no strongly \BbbZ 5-connected subgraph H with | H| > 1. In particular,
(a) G has no copy of 4K2, T2,3,3, 2K4, or 3C4 (by Lemma 2.6), and
(b) | G| \geq 4.

Proof. Suppose to the contrary that H is a strongly \BbbZ 5-connected subgraph of G
with | H| > 1, and let G\prime = G/H. Since G is a minimal counterexample, G\prime is strongly
\BbbZ 5-connected, by Theorem 2.2. So Lemma 1.6 implies G is strongly \BbbZ 5-connected,
which is a contradiction. This proves both the first statement and (a). For (b), clearly
| G| \geq 3, since w(G) \geq 0 and G /\in \{ 2K2, 3K2\} and G contains no 4K2. So assume
| G| = 3. Since w(G/\scrP ) \geq 0 for the trivial partition \scrP , we know that \| G\| \geq 8. Since
G /\in \{ T1,3,3, T2,2,3\} , either G contains 4K2 or G contains T2,3,3. Each case contradicts
(a).

Claim 2. Let \scrP = \{ P1, P2, . . . , Pt\} be a nontrivial partition of V (G). Now
(a) wG(\scrP ) \geq 5 and
(b) wG(\scrP ) \geq 8 if \scrP is normal.

Proof. Our proof is by contradiction. For an almost trivial partition \scrP , we have
wG(\scrP ) \geq wG(V (G))  - 2(3) + 11 \geq 5, since G does not contain 4K2 by Claim 1(a).
If \scrP = \{ V (G)\} , then wG(\scrP ) = 0  - 11 + 19 = 8. By definition, all other nontrivial
partitions are normal.

Let \scrP = \{ P1, P2, . . . , Pt\} be a normal partition of V (G). By symmetry we assume
| P1| > 1 and let H = G[P1]. For any partition \scrQ = \{ Q1, Q2, . . . , Qs\} of V (H), by
(2.1) the refinement \scrQ \cup (\scrP \setminus \{ P1\} ) of \scrP satisfies

wH(\scrQ ) = wG(\scrQ \cup (\scrP \setminus \{ P1\} )) - wG(\scrP ) + 8.(2.2)
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(a) We first show that wG(\scrP ) \geq 5. If wG(\scrP ) \leq 4, then (2.2) implies wH(\scrQ ) \geq 4
for any partition \scrQ of H, since wG(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 0. Hence w(H) \geq 4 and H is
strongly \BbbZ 5-connected by Lemma 2.9(c), which contradicts Claim 1. This proves (a).

(b) We now show that wG(\scrP ) \geq 8. Suppose to the contrary that wG(\scrP ) \leq 7.
If \scrP contains at least two nontrivial parts, say, | P2| > 1, then (a) implies wG(\scrQ \cup 
(\scrP \setminus \{ P1\} )) \geq 5 for any partition \scrQ of H. Hence w(H) \geq 6 by (2.2), and so H
is strongly \BbbZ 5-connected by Lemma 2.9(c), which contradicts Claim 1. So assume
instead that \scrP contains a unique nontrivial part P1 and | P1| \geq 3. For any nontrivial
partition \scrQ of H, the refinement \scrQ \cup (\scrP \setminus \{ P1\} ) of \scrP is a nontrivial partition of G,
and so wG(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 5 by (a). Thus wH(\scrQ ) \geq 6 for any nontrivial partition
\scrQ of H by (2.2). For the trivial partition \scrQ \ast of H, since wG(\scrP ) \leq 7, (2.2) implies
wH(\scrQ \ast ) \geq 1. Since | H| = | P1| \geq 3, we know H /\in \{ 2K2, 3K2\} . Since w(H) \geq 1, we
know H \not \sim = Ta,b,c with a + b + c \leq 7. So Lemma 2.9(a) implies that H is strongly
\BbbZ 5-connected, which contradicts Claim 1.

The next two claims are consequences of Claim 2; they give lower bounds on the
edge-connectivity of G.

Claim 3. For a partition \scrP = \{ P1, P2, . . . , Pt\} ,
(a) if | P1| \geq 2 and | P2| \geq 2, then wG(\scrP ) \geq 10;
(b) if | P1| \geq 2 and | P2| \geq 3, then wG(\scrP ) \geq 13.

Proof. Let H = G[P1] and \scrQ = \{ Q1, Q2, . . . , Qs\} be a partition of H. Let
\scrP \prime = \scrQ \cup (\scrP \setminus \{ P1\} ). Note that if | P2| \geq 2, then the refinement \scrP \prime is nontrivial, and
if | P2| \geq 3, then \scrP \prime is normal. By (2.1),

wG(\scrP \prime ) = wH(\scrQ ) + wG(\scrP ) - 8.(2.3)

By Claim 1, H is not strongly \BbbZ 5-connected. So, by Lemma 2.9(c), we can choose
\scrQ such that wH(\scrQ ) \leq 3. Substituting into (2.3) above yields wG(\scrP ) = wG(\scrP \prime ) + 8 - 
wH(\scrQ ) \geq wG(P

\prime )+5. (a) Since \scrP \prime is nontrivial, Claim 2(a) implies wG(\scrP \prime ) \geq 5, which
gives wG(\scrP ) \geq 5 + 5 = 10. (b) Since \scrP \prime is normal, Claim 2(b) implies wG(\scrP \prime ) \geq 8,
which gives wG(\scrP ) \geq 8 + 5 = 13.

Claim 4. Let [X,Xc] be an edge cut of G.
(a) Now | [X,Xc]| \geq 6. That is, G is 6-edge-connected.
(b) If | X| \geq 2 and | Xc| \geq 3, then | [X,Xc]| \geq 8.

Proof. If [X,Xc] is an edge cut of G, then \scrP = \{ X,Xc\} is a partition of V (G).
(a) Clearly \scrP is normal, since | G| \geq 4 by Claim 1(b). Now Claim 2(b) implies
8 \leq wG(\scrP ) = 2| [X,Xc]|  - 22 + 19, which yields | [X,Xc]| \geq 6. (b) If | X| \geq 2 and
| Xc| \geq 3, then w(\scrP ) \geq 13 by Claim 3(b). So 13 \leq wG(\scrP ) = 2| [X,Xc]|  - 22 + 19,
which implies | [X,Xc]| \geq 8.

Next we show that G contains no copy of any graph in Figure 3 below. We
write H\circ to denote the graph formed from H by subdividing one copy of an edge
of maximum multiplicity. So, for example, 4K\circ 

2 = T1,1,3. We write H\circ \circ to denote
(H\circ )\circ . (The reader may think of the \circ as representing the new 2-vertex.)

Claim 5. G has no copy of T1,1,3.

Proof. Suppose G contains a copy of T1,1,3 with vertices x, y, z and \mu (xy) = 3. We
lift xz, zy to become a new edge xy and then contract the corresponding 4K2 (contract
xy). Let G\prime denote the resulting graph. The trivial partition \scrQ \ast of G\prime satisfies
wG\prime (\scrQ \ast ) \geq w(G) - 2(5) + 11 \geq 1. If \scrQ \prime = \{ V (G\prime )\} , then \rho G\prime (\scrQ \prime ) = 0 - 17 + 31 = 14.
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t t
t

t t
t t

t

t t
t tt

T1,1,3 3C\circ 
4 T \circ \circ 

2,3,3

Fig. 3. The graphs T1,1,3, 3C\circ 
4 , T

\circ \circ 
2,3,3.

Every other nontrivial partition \scrQ \prime of G\prime corresponds to a normal partition \scrQ of G in
which the contracted vertex is replaced by \{ x, y\} . Since xz, zy are the only two edges
possibly counted in wG(\scrQ ) but not in wG\prime (\scrQ \prime ), we have wG\prime (\scrQ \prime ) \geq wG(\scrQ )  - 4 \geq 4,
by Claim 2(b). Thus w(G\prime ) \geq 1. By Claim 4, G is 6-edge-connected, so G\prime is 4-
edge-connected. Thus G\prime is strongly \BbbZ 5-connected, by Lemma 2.9(b). This is a lifting
reduction of the first type, so G is strongly \BbbZ 5-connected, which is a contradiction.

Claim 6. G has no copy of 3C\circ 
4 .

Proof. Suppose G contains a copy of 3C\circ 
4 with vertices v1, v2, v3, v4, z, where z is

a 2-vertex with N(z) = \{ v1, v2\} . We lift v1z, zv2 to become a new edge v1v2 and then
contract the corresponding 3C4 to obtain the graph G\prime . For the trivial partition \scrQ \ast 

of G\prime , we have wG\prime (\scrQ \ast ) \geq w(G)  - 2(13) + 3(11) \geq 7. For every nontrivial partition
\scrQ \prime of G\prime , we have wG\prime (\scrQ \prime ) \geq wG(\scrQ )  - 4 \geq 4 for the same reason as in the previous
claim. Thus w(G\prime ) \geq 4, so G\prime is strongly \BbbZ 5-connected by Lemma 2.9(c). This is a
lifting reduction of the first type. Hence G is strongly \BbbZ 5-connected, which contradicts
Claim 1.

Now we can slightly strengthen Claim 2(b).

Claim 7. Every normal partition \scrP = \{ P1, P2, . . . , Pt\} satisfies

w(\scrP ) \geq 9.

Proof. Let \scrP = \{ P1, P2, . . . , Pt\} be a normal partition of G with | P1| > 1. Sup-
pose to the contrary that w(\scrP ) = 8, by Claim 2(b). Now | P1| \geq 3 and | P2| = \cdot \cdot \cdot =
| Pt| = 1, by Claim 3(a). As in Claim 2, let H = G[P1], let \scrQ = \{ Q1, Q2, . . . , Qs\} be
a partition of H, and let \scrP \prime = \scrQ \cup (\scrP \setminus \{ P1\} ) be a refinement of \scrP . Equation (2.1)
implies

wH(\scrQ ) = wG(\scrP \prime ) - wG(\scrP ) + 8 = wG(\scrP \prime ).

If \scrQ is a nontrivial partition of H, then \scrP \prime is nontrivial in G, so wH(\scrQ ) = wG(\scrP \prime ) \geq 5,
by Claim 2(a). If \scrQ is the trivial partition of H, then wH(\scrQ ) = wG(\scrP \prime ) \geq 0. Since
| H| = | P1| \geq 3, we know H /\in \{ 2K2, 3K2\} . And since G has no copy of T1,1,3, by
Claim 5, we know H /\in \{ T1,3,3, T2,2,3\} . Now Lemma 2.9(a) implies that H is strongly
\BbbZ 5-connected, which contradicts Claim 1.

Claim 7 allows us to also prove that the third graph in Figure 3 is reducible.

Claim 8. G has no copy of T \circ \circ 
2,3,3.
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Proof. Suppose G contains a copy of T \circ \circ 
2,3,3 with vertices w, x, y, z1, z2, where z1

and z2 are 2-vertices with N(z1) = \{ w, x\} and N(z2) = \{ x, y\} . We lift wz1, z1x to
become a new edge wx and lift xz2, z2y to become a new edge xy. Now \{ w, x, y\} 
induces a copy of T2,3,3, so we contract \{ w, x, y\} to form a graph G\prime . Since \delta (G) \geq 6
by Claim 4(a), we have \delta (G\prime ) \geq 4. The size of each edge cut decreases at most 4 from
G to G\prime , and it decreases at least 3 only if that edge cut has at least two vertices on
each side. In that case Claim 4(b) shows the original edge cut in G has size at least
8. Since G is 6-edge-connected by Claim 4, each edge cut in G\prime has size at least 4, so
G\prime is 4-edge-connected.

The trivial partition \scrQ \ast of G\prime satisfies wG\prime (\scrQ \ast ) \geq w(G)  - 2(10) + 11(2) \geq 2. If
\scrQ \prime = \{ V (G\prime )\} , then \rho G\prime (\scrQ \prime ) = 0  - 17 + 31 = 14. Every other nontrivial partition
\scrQ \prime of G\prime corresponds to a normal partition \scrQ of G in which the contracted vertex
is replaced by \{ w, x, y\} . So wG\prime (\scrQ \prime ) \geq wG(\scrQ )  - 2(4) \geq 1, by Claim 7. Thus, G\prime 

is 4-edge-connected and w(G\prime ) \geq 1. By Lemma 2.9(b), G\prime is strongly \BbbZ 5-connected.
This is a lifting reduction of the first type. Since T2,3,3 is strongly \BbbZ 5-connected by
Lemma 2.6, graph G is strongly \BbbZ 5-connected, which contradicts Claim 1.

2.4. The final step: Discharging. Now we use discharging to show that some
subgraph in Figure 2 or 3 must appear in G. This contradicts one of the claims in
the previous section and thus finishes the proof.

Fix a plane embedding of G. (We assume that all parallel edges between two
vertices v and w are embedded consecutively, in the cyclic orders, around both v and
w.) Let F (G) denote the set of all faces of G. For each face f \in F (G), we write \ell (f)
for its length. A face f is a k-face, k+-face, or k - -face if (respectively) \ell (f) = k,
\ell (f) \geq k, or \ell (f) \leq k. A sequence of faces f1f2 . . . fs is called a face chain if, for each
i \in \{ 1, . . . , s - 1\} , faces fi and fi+1 are adjacent, i.e., their boundaries share a common
edge. The length of this chain is s + 1. Two faces f and f \prime are weakly adjacent if
there is a face chain ff1 . . . fsf

\prime such that that fi is a 2-face for each i \in \{ 1, . . . , s\} .
We allow s to be 0, meaning f and f \prime are adjacent. A string is a maximal face chain
such that each of its faces is a 2-face. The boundary of a string consists of two edges,
each of which is incident to a 3+-face. A k-face is called a (t1, t2, . . . , tk)-face if its
boundary edges are contained in strings with lengths t1, t2, . . . , tk. Here ti is allowed
to be 1, meaning the corresponding edge is not contained in a string.

Since w(G) \geq 0, we have 2\| G\|  - 11| G| +19 \geq 0. By Euler's formula, | G| +| F (G)|  - 
\| G\| = 2. We solve for | G| in the equation and substitute into the inequality, which
gives \sum 

f\in F (G)

\ell (f) = 2\| G\| \leq 22

9
| F (G)|  - 2

3
.(2.4)

We assign to each face f initial charge \ell (f). So the total charge is strictly less
than 22| F (G)| /9. To redistribute charge, we use the following three discharging rules.

(R1) Each 2-face receives charge 2
9 from each weakly adjacent 3+-face.

(R2) Each (2, 2, 2)-face receives charge 1
9 from each weakly adjacent 4+-face and

(2, 1, 1)-face.
(R3) Each (2, 2, 2)-face receives charge 1

18 from each weakly adjacent (2, 2, 1)-face.
If two faces are weakly adjacent through multiple edges or strings, then the dis-

charging rules apply for each edge and string. After applying these rules, we claim
that every face has charge at least 22

9 , which contradicts (2.4).
Each 2-face ends with 2 + 2( 29 ) =

22
9 . Since G contains no 4K2 and no T1,1,3, the

charge each face sends across each boundary edge is at most 2(29 ). Thus, when k \geq 5
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each k-face ends with at least k - k(2( 29 )) =
5k
9 \geq 25

9 . Since G contains no 3C4 and no
3C\circ 

4 , each 4-face ends with at least 4 - 7( 29 ) =
22
9 . It is straightforward to check that

each (1, 1, 1)-face ends with 3, each (2, 1, 1)-face ends with at least 3  - 2
9  - 1

9 = 24
9 ,

and each (2, 2, 1)-face ends with at least 3  - 2( 29 )  - 2( 1
18 ) =

22
9 . It remains to check

(2, 2, 2)-faces.
Suppose to the contrary that a (2, 2, 2)-face xyz ends with less than 22

9 . After
(R1), face xyz has 3  - 3( 29 ) = 21

9 . Since xyz ends with less than 22
9 , it receives at

most 1
18 by (R2) and (R3). So xyz must be adjacent to three 3-faces, and at most one

of these is a (2, 2, 1)-face, while the others are (2, 2, 2)-faces. By Claim 8, G contains
no T \circ \circ 

2,3,3, so the three 3-faces adjacent to xyz must share a new common vertex, say
w. If one of wx,wy,wz is not contained in a string, then xyz is adjacent to two
(2, 2, 1)-faces and so receives at least 2( 1

18 ) by (R3), contradicting our assumption
above. Thus we assume \mu (wx) = \mu (wy) = \mu (wz) = 2. So G[\{ x, y, z, w\} ] contains a
2K4, contradicting Claim 1(a). This shows that each (2, 2, 2)-face ends with at least
22
9 , which completes the proof.

3. Circular 7/3-flows: Proof of Theorem 1.4. In this section we prove
Theorem 1.4. As in the previous section, this theorem is implied by the more technical
result, Theorem 3.3. The proof of Theorem 3.3 is similar to that of Theorem 2.2, but
with more reducible configurations and more details.

3.1. Preliminaries on modulo 7-orientations. We define a weight function
\rho as follows (which is similar to w in Definition 2.1).

Definition 3.1. Let \scrP = \{ P1, P2, . . . , Pt\} be a partition of V (G). Let

\rho G(\scrP ) =

t\sum 
i=1

d(Pi) - 17t+ 31

and \rho (G) = min\{ \rho G(\scrP ) : \scrP is a partition of V (G)\} .
Analogous to Lemma 2.8, we have the following.

Lemma 3.2. Let \scrP = \{ P1, P2, . . . , Pt\} be a partition of V (G) with | P1| > 1. Let
H = G[P1], and let \scrQ = \{ Q1, Q2, . . . , Qs\} be a partition of V (H). Now \scrQ \cup (\scrP \setminus \{ P1\} )
is a refinement of \scrP satisfying

\rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) = \rho H(\scrQ ) + \rho G(\scrP ) - (31 - 17).(3.1)

Proof. The proof is identical to that of Lemma 2.8, with 17 in place of 11 and
with 31 in place of 19.

We typically assume that each edge has multiplicity at most 5 (since 6K2 is
strongly \BbbZ 7-connected and so cannot appear in a minimal counterexample to The-
orem 3.3, as we prove in Claim 9, below). Now \rho (aK2) = 2a  - 3, \rho (Ta,b,c) =
2a + 2b + 2c  - 20, and \rho (3K4) =  - 1; see Figure 4. In each case, the minimum
in the definition of \rho is achieved uniquely by the partition with each vertex in its own
part.

Let \scrF = \{ aK2 : 2 \leq a \leq 5\} \cup \{ Ta,b,c : 10 \leq a + b + c \leq 11 and Ta,b,c is 6-edge-
connected\} . It is straightforward3 to check that neither 3K4 nor any graph in \scrF is

3The graph 3K4 cannot achieve the boundary \beta (v) = 0 for all v. In such an orientation D each
vertex v must have | d+D(v)  - d - D(v)| = 7. But now some two adjacent vertices must either both
have indegree 8 or both have outdegree 8, and we cannot orient the three edges between them to
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... a

aK2 Ta,b,c

b

a c

3K4 3K+
4

Fig. 4. The graphs aK2, Ta,b,c, 3K4, 3K
+
4 .

strongly \BbbZ 7-connected. Further, if Ta,b,c is 8-edge-connected, then \| G\| \geq 3\delta (G)/2 \geq 
12. Thus, no graph in \scrF is 8-edge-connected. The following theorem is the main
result of section 3. We call a partition \scrP problematic if G/\scrP \in \scrF .

Theorem 3.3. Let G be a planar graph and \beta be a \BbbZ 7-boundary of G. If \rho (G) \geq 0,
then G admits a (\BbbZ 7, \beta )-orientation, unless G has a problematic partition.

As easy corollaries of Theorem 3.3 we get the following two results.

Theorem 3.4. Every 17-edge-connected planar graph is strongly \BbbZ 7-connected.

Theorem 3.5. Every odd-17-edge-connected planar graph admits a modulo 7-
orientation. In particular, every 16-edge-connected planar graph admits a modulo
7-orientation (and thus a circular 7/3-flow).

The proofs of Theorems 3.4 and 3.5 are identical to those of Theorems 2.3 and 2.5,
but with 17 in place of 11 and with 31 in place of 19. Note that Theorem 3.5 includes
Theorem 1.4 as a special case.

For the proof of Theorem 3.3, we need the following two lemmas. Their proofs
are more tedious than enlightening, so we postpone them to the appendix. When a
graph H is edge-transitive, we write H+ or H - to denote the graph formed by adding
or removing a single copy of one edge.

Lemma 3.6. Each of the following graphs is strongly \BbbZ 7-connected: 6K2, 3K
+
4 ,

and every 6-edge-connected graph Ta,b,c where a+ b+ c = 12.

Let 5C=
4 denote the graph formed from 5C4 by deleting a perfect matching.

Lemma 3.7. The graph 5C=
4 is strongly \BbbZ 7-connected. Further, if G is a graph

with | G| = 4, \| G\| = 19, \mu (G) \leq 5, and \delta (G) \geq 8, then G is strongly \BbbZ 7-connected.

3.2. Properties of a minimal counterexample in Theorem 3.3. Let G be
a counterexample to Theorem 3.3 that minimizes | G| +\| G\| . Thus Theorem 3.3 holds
for all graphs smaller than G. This implies the following lemma, which we will use
frequently.

achieve this. When a \leq 5, the graph aK2 has seven \BbbZ 7-boundaries and at most 6 orientations, so at
least one boundary is not achievable. For Ta,b,c, it suffices to consider the case a+ b+ c = 11. Let
V (G) = \{ v1, v2, v3\} . By symmetry, we assume d(v1) \leq d(v2) \leq d(v3). For T1,5,5, we cannot achieve
\beta (v1) = \beta (v2) = 1 and \beta (v3) = 5, since v1 and v2 must each have all incident edges oriented in. For
T2,4,5, we cannot achieve \beta (v1) = 1, \beta (v2) = 2, and \beta (v3) = 4, since v1 must have all incident edges
oriented in, and v2 must have all but one edges oriented in. For T3,3,5, we cannot achieve \beta (v1) = 1
and \beta (v2) = \beta (v3) = 3, since v1 must have all incident edges oriented in. For T3,4,4, we cannot
achieve \beta (v1) = \beta (v2) = 2 and \beta (v3) = 3, since v1 and v2 must each have all but one incident edge
oriented in.
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Lemma 3.8. If H is a planar graph with \rho (H) \geq 0 and | H| + \| H\| < | G| + \| G\| ,
then each of the following holds.

(a) If \rho H(\scrP ) \geq 8 for every nontrivial partition \scrP , then H is strongly \BbbZ 7-connected
unless H \in \scrF .

(b) If \rho (H) \geq 8, then H is strongly \BbbZ 7-connected.
(c) Assume that H is 6-edge-connected.

(c-i) If \rho H(\scrP ) \geq 3 for every nontrivial partition \scrP , then H is strongly \BbbZ 7-
connected unless H \sim = Ta,b,c with a+ b+ c \in \{ 10, 11\} .

(c-ii) If \rho (H) \geq 3, then H is strongly \BbbZ 7-connected.
(c-iii) If H is 8-edge-connected, then H is strongly \BbbZ 7-connected.

Proof. We apply Theorem 3.3 to H. (a) For each J \in \scrF , the trivial partition \scrQ \ast 

satisfies \rho J(\scrQ \ast ) \leq max\{ 2(5) - 2(17)+31, 2(11) - 3(17)+31\} = 7. Since \rho H(\scrP ) \geq 8 for
every nontrivial partition \scrP , we know that H/\scrP /\in \scrF . Part (b) follows immediately
from (a). Consider (c). Since H is 6-edge-connected, there does not exist \scrP such that
| H/\scrP | = 2 and \| H/\scrP \| \leq 5. For (c-i), suppose there is a nontrivial partition \scrP such
that H/\scrP \sim = Ta,b,c with a + b + c \in \{ 10, 11\} . Now \rho H(\scrP ) = 2(11)  - 3(17) + 31 = 2,
which contradicts the hypothesis. Note that (c-ii) follows directly from (c-i). Finally,
we prove (c-iii). Since G is 8-edge-connected, so is G/\scrP , for each partition \scrP . Recall
that each element of \scrF has edge-connectivity at most 7. Thus, G/\scrP /\in \scrF .

As in section 2, the main idea of the proof is to show that \rho G(\scrP ) is relatively
large for each nontrivial partition \scrP . This gives us the ability to apply Lemma 3.8
to subgraphs of G even after modifying them slightly, which yields more power when
proving subgraphs are reducible.

Claim 9. G has no strongly \BbbZ 7-connected subgraph H with | H| > 1. In particular,
(a) G has no copy of 6K2, 3K

+
4 , or a 6-edge-connected graph Ta,b,c with a+b+c =

12; and
(b) | G| \geq 4.

Proof. The proof of the first statement is identical to that of Claim 1, with \BbbZ 7 in
place of \BbbZ 5. Note that (a) follows from the first statement and Lemma 3.6.

Now we prove (b). Clearly | G| \geq 2, so first suppose | G| = 2. Since \rho (G) \geq 0,
we know \| G\| \geq 2. Since G has no problematic partition, we know \| G\| \geq 6. But
now G contains 6K2, which contradicts (a). So assume | G| = 3, that is, G = Ta,b,c.
Since \rho (G) \geq 0, we know a+ b+ c \geq 10. Since G has no problematic partition, G is
6-edge-connected. By the definition of \scrF , this implies that a+ b+ c \geq 12. Recall that
G contains no 6K2 by (a); thus max\{ a, b, c\} \leq 5. A short case analysis shows that G
contains as a subgraph one of T2,5,5, T3,4,5, or T4,4,4. Each of these has 12 edges and
is 6-edge-connected, which contradicts (a).

Claim 10. If \scrP = \{ P1, P2, . . . , Pt\} is a nontrivial partition of V (G), then
(a) \rho G(\scrP ) \geq 7 and
(b) \rho G(\scrP ) \geq 12 if \scrP is normal.

Proof. We argue by contradiction. For an almost trivial partition \scrP , we have
\rho G(\scrP ) \geq \rho G(V (G))  - 2(5) + 17 \geq 7, since G does not contain 6K2 by Claim 9. If
\scrP = \{ V (G)\} , then wG(\scrP ) = 0  - 17 + 31 = 14. We now only need to consider the
weight of normal partitions.

Let \scrP = \{ P1, P2, . . . , Pt\} be a normal partition of V (G). We may assume | P1| > 1
and let H = G[P1]. For any partition \scrQ = \{ Q1, Q2, . . . , Qs\} of V (H), by (3.1) the
refinement \scrQ \cup (\scrP \setminus \{ P1\} ) of \scrP satisfies
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\rho H(\scrQ ) = \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) - \rho G(\scrP ) + 14.(3.2)

(a) We first show that \rho G(\scrP ) \geq 7. If \rho G(\scrP ) \leq 6, then (3.2) implies that \rho H(\scrQ ) \geq 8
for any partition \scrQ of H, since \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 0. Hence \rho (H) \geq 8 and H is
strongly \BbbZ 7-connected by Lemma 3.8(b), which contradicts Claim 9. This proves (a).

(b) We now show that \rho G(\scrP ) \geq 12. Suppose, to the contrary, that \rho G(\scrP ) \leq 11.
If \scrP contains at least two nontrivial parts, say, | P2| > 1, then (a) implies \rho G(\scrQ \cup 
(\scrP \setminus \{ P1\} )) \geq 7 for any partition \scrQ of H. Hence \rho (H) \geq 10 by (3.2), and so H is
strongly \BbbZ 7-connected by Lemma 3.8(b), which contradicts Claim 9. Assume instead
that \scrP contains a unique nontrivial part P1 and | P1| \geq 3. For any nontrivial partition
\scrQ of H, the refinement \scrQ \cup (\scrP \setminus \{ P1\} ) of \scrP is a nontrivial partition of G, and so
\rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 7 by (a). Thus \rho H(\scrQ ) \geq 10 for any nontrivial partition \scrQ 
of H by (3.2). For the trivial partition \scrQ \ast of H, since \rho G(\scrP ) \leq 11, (3.2) implies
\rho H(\scrQ \ast ) \geq 3. Since | H| = | P1| \geq 3, we know H \not \sim = aK2. Since \rho (H) \geq 3, we
know H \not \sim = Ta,b,c with a + b + c \leq 11. So Lemma 3.8(a) implies that H is strongly
\BbbZ 7-connected, which contradicts Claim 9.

The next two claims follow from Claim 10. They give lower bounds on the edge-
connectivity of G.

Claim 11. For a partition \scrP = \{ P1, P2, . . . , Pt\} ,
(a) if | P1| \geq 2 and | P2| \geq 2, then \rho G(\scrP ) \geq 14, and
(b) if | P1| \geq 2 and | P2| \geq 3, then \rho G(\scrP ) \geq 19.

Proof. Let H = G[P1] and \scrQ = \{ Q1, Q2, . . . , Qs\} be a partition of H. By (3.1),

\rho H(\scrQ ) = \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) - \rho G(\scrP ) + 14.(3.3)

By Claim 9, H is not strongly \BbbZ 7-connected. So, by Lemma 3.8(b), we can choose
\scrQ such that wH(\scrQ ) \leq 7. Substituting into (3.3) above yields wG(\scrP ) = wG(\scrQ \cup (\scrP \setminus 
\{ P1\} ))+14 - wH(\scrQ ) \geq wG(\scrQ \cup (\scrP \setminus \{ P1\} ))+7. (a) Since \scrQ \cup (\scrP \setminus \{ P1\} ) is nontrivial,
Claim 10(a) implies wG(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 7, which gives wG(\scrP ) \geq 7 + 7 = 14. (b)
Since \scrQ \cup (\scrP \setminus \{ P1\} ) is normal, Claim 10(b) implies wG(\scrQ \cup (\scrP \setminus \{ P1\} )) \geq 12, which
gives wG(\scrP ) \geq 12 + 7 = 19.

Claim 12. Let [X,Xc] be an edge cut of G.
(a) Now | [X,Xc]| \geq 8. That is, G is 8-edge-connected.
(b) If | X| \geq 2 and | Xc| \geq 3, then | [X,Xc]| \geq 11.

Proof. (a) Let \scrP = \{ X,Xc\} . Since | G| \geq 4 by Claim 9(b), the partition \scrP is
normal. Now Claim 10(b) gives 12 \leq \rho G(\scrP ) = 2| [X,Xc]|  - 34 + 31, which implies
| [X,Xc]| \geq 8.

(b) If | X| \geq 2 and | Xc| \geq 3, then \rho G(\scrP ) \geq 19 by Claim 11(b). So 19 \leq \rho G(\scrP ) =
2| [X,Xc]|  - 34 + 31, which implies | [X,Xc]| \geq 11.

Let T \bullet 
1,1,5 denote the graph formed from T1,1,5 by subdividing an edge of multi-

plicity 1. We now show that G contains none of the folllowing (shown in Figure 5) as
subgraphs: T1,1,5, T

\circ 
1,1,5, T

\bullet 
1,1,5, and T2,2,4.

Claim 13. G has no copy of T1,1,5.

Proof. Suppose G contains a copy of T1,1,5 with vertices x, y, z and \mu (xy) = 5.
We lift xz, zy to become a new edge xy and contract the resulting 6K2 induced by
\{ x, y\} . Let G\prime denote the resulting graph. The trivial partition \scrQ \ast of G\prime satisfies
\rho G\prime (\scrQ \ast ) \geq \rho (G) - 2(7) + 17 \geq 3. If Q\prime = \{ V (G\prime )\} , then \rho G\prime (Q\prime ) = 0 - 17 + 31 = 14.
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T1,1,5 T •
1,1,5T ◦

1,1,5 T2,2,4

Fig. 5. The graphs T1,1,5, T \bullet 
1,1,5, T

\circ 
1,1,5, T2,2,4.

Every other nontrivial partition \scrQ \prime of G\prime corresponds to a normal partition \scrQ of G in
which the contracted vertex is replaced by \{ x, y\} . Since xz, zy are the only two edges
possibly counted in \rho G(\scrQ ) but not in \rho G\prime (\scrQ \prime ), we have \rho G\prime (\scrQ \prime ) \geq \rho G(\scrQ ) - 2(2) \geq 8,
by Claim 10(b). So \rho (G\prime ) \geq 3. Since G is 8-edge-connected by Claim 12, graph G\prime 

is 6-edge-connected, and so G\prime is strongly \BbbZ 7-connected by Lemma 3.8(c-ii). This is
a lifting reduction of the first type. It shows that G is strongly \BbbZ 7-connected, which
contradicts Claim 9.

Claim 14. | G| \geq 5.

Proof. Suppose the claim is false. Claim 9(b) implies | G| = 4. Since \rho (G) \geq 0,
the trivial partition shows that \| G\| \geq 19. First suppose \| G\| > 19, and let G\prime = G - e
for some arbitrary edge e. Since \| G\prime \| < \| G\| , we will apply Lemma 3.8(c-i) to prove
G\prime is strongly \BbbZ 7-connected. Since | G\prime | = 4, we know G\prime /\in \scrF . So it suffices to show
that G\prime is 6-edge-connected and \rho G\prime (\scrP ) \geq 3 for every nontrivial partition \scrP . The first
condition holds because G is 8-edge-connected, by Claim 12(a). The second holds
because \rho G\prime (\scrP ) \geq \rho G(\scrP ) - 2 \geq 5, by Claim 10(a). So G\prime is strongly \BbbZ 7-connected by
Lemma 3.8(c-i), which contradicts Claim 9.

Instead assume \| G\| = 19. Claim 12(a) implies \delta (G) \geq 8. Since G contains no
6K2 by Claim 9(a), we know \mu (G) \leq 5. Now Lemma 3.7 shows that G is strongly
\BbbZ 7-connected. Thus, G is not a counterexample, which proves the claim.

Claim 15. G has no copy of T \circ 
1,1,5.

Proof. Suppose G contains a copy of T1,1,5 with vertices w, x, y, z and \mu (xy) = 4.
We lift xz, zy to become a new edge xy, and lift xw,wy to become another new
edge xy, and then contract the resulting 6K2 to form a new graph G\prime . The trivial
partition \scrQ \ast of G\prime satisfies \rho G\prime (\scrQ \ast ) \geq \rho (G)  - 2(8) + 17 \geq 1. If Q\prime = \{ V (G\prime )\} , then
\rho G\prime (Q\prime ) = 0  - 17 + 31 = 14. Every other nontrivial partition \scrQ \prime of G\prime corresponds
to a normal partition \scrQ of G in which the contracted vertex is replaced by \{ x, y\} .
Since xz, zy, xw,wy are the only edges possibly counted in \rho G(\scrQ ) but not in \rho G\prime (\scrQ \prime ),
Claim 10(b) implies \rho G\prime (\scrQ \prime ) \geq \rho G(\scrQ ) - 2(4) \geq 4. Since w \not = z, Claim 12(a,b) implies
G\prime is 6-edge-connected. Because | V (G\prime )| = | V (G)|  - 1 \geq 4, we know G\prime \not \sim = Ta,b,c

with a + b + c \in \{ 10, 11\} . Hence G\prime is strongly \BbbZ 7-connected by Lemma 3.8(c-i).
This is a lifting reduction of the first type. So G is strongly \BbbZ 7-connected, which is a
contradiction.

Claim 16. G has minimum degree at least 10. So G is 10-edge-connected by
Claim 12.

Proof. The second statement follows from the first. To prove the first, suppose
there exists x \in V (G) with 8 \leq d(x) \leq 9. Let x1, x2 be two neighbors of x. To
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form a graph G\prime from G, we lift x1x, xx2 to become a new edge x1x2, orient the
remaining edges incident with x to achieve \beta (x), and finally delete x. This is similar
to achieving \beta (v1) in the proof of Lemma 2.6 (that G has no copy of 6K2). This is a
lifting reduction of the second type. So, to show G has a \beta -orientation, it suffices to
show that G\prime is strongly \BbbZ 7-connected.

Observe that the trivial partition \scrQ \ast of G\prime satisfies \rho G\prime (\scrQ \ast ) \geq \rho (G) - 2(9 - 1) +
17 \geq 1. Also, for an almost trivial partition \scrQ \prime of G\prime with | Q1| = 2, we have \rho G\prime (\scrQ \prime ) \geq 
\rho G\prime (\scrQ \ast ) + 17 - 2(5) \geq 8. Note that when Q1 = \{ x1, x2\} we still have \mu G\prime (x1x2) \leq 5
by Claim 13. If Q\prime = \{ V (G\prime )\} , then \rho G\prime (Q\prime ) = 0  - 17 + 31 = 14. Moreover, for any
other normal partition \scrQ \prime of G\prime (besides \{ V (G\prime )\} ), since \scrQ = \scrQ \prime \cup \{ x\} is a normal
partition of G, we have \rho G\prime (\scrQ \prime ) \geq \rho G(\scrQ ) - 2(9) + 17 \geq 11. Since | G\prime | = | G|  - 1 \geq 4
and \rho G\prime (\scrQ \prime ) \geq 8 for any nontrivial partition, Lemma 3.8(a) implies that G\prime is strongly
\BbbZ 7-connected.

Claim 17. G has no copy of T \bullet 
1,1,5.

Proof. Suppose G has a copy of T \bullet 
1,1,5 with vertices v1, v2, v3, v4 (in order around

a 4-cycle) and \mu (v1v4) = 5. We lift the edges v1v2, v2v3, v3v4 to become a new copy
of edge v1v4 and contract the resulting 6K2; call this new graph G\prime . The trivial
partition \scrQ \ast of G\prime satisfies \rho G\prime (\scrQ \ast ) \geq \rho (G)  - 2(8) + 17 \geq 1. If \scrQ \prime = \{ V (G\prime )\} , then
\rho G\prime (\scrQ \prime ) = 0 - 17+31 = 14. Every other nontrivial partition \scrQ \prime of G\prime corresponds to a
normal partition \scrQ of G in which the contracted vertex is replaced by \{ v1, v4\} . Since
v1v2, v2v3, v3v4 are the only edges possibly counted in \rho G(\scrQ ) but not in \rho G\prime (\scrQ \prime ), we
have \rho G\prime (\scrQ \prime ) \geq \rho G(\scrQ ) - 2(3) \geq 6 by Claim 10(b). Claim 14 implies | G\prime | = | G|  - 1 \geq 4,
so G\prime /\in \scrF . Since G is 10-edge-connected by Claim 16, the graph G\prime is 6-edge-
connected. So G\prime is strongly \BbbZ 7-connected by Lemma 3.8(c-i).

Claim 18. G has no copy of T2,2,4.

Proof. Suppose G contains a copy of T2,2,4 with vertices x, y, z and \mu (xy) = 4. To
form a new graph G\prime from G, we delete two copies (each) of xz, zy and add two new
parallel edges xy, and then contract the resulting 6K2 induced by \{ x, y\} . Claim 16
shows G\prime is 6-edge-connected. Similar to the proof of Claim 15, the trivial partition
\scrQ \ast of G\prime satisfies \rho G\prime (\scrQ \ast ) \geq \rho (G) - 2(8) + 17 \geq 1, and every nontrivial partition \scrQ \prime 

of G\prime satisfies \rho G\prime (\scrQ \prime ) \geq \rho G(\scrQ ) - 2(4) \geq 4. Since | G\prime | = | G|  - 1 \geq 4, Lemma 3.8(c-i)
implies G\prime is strongly \BbbZ 7-connected. This is a lifting reduction of the first type, which
implies that G is strongly \BbbZ 7-connected, and thus gives a contradiction.

Claim 19. For any normal partition \scrP = \{ P1, P2, . . . , Pt\} with | P1| \geq 3, we have

\rho G(\scrP ) \geq 14.

Proof. Suppose the claim is false, and let \scrP be such a partition with \rho G(\scrP ) \leq 13.
Let H = G[P1]. Since G contains no copy of T1,1,5 or T2,2,4, we know H \not \sim = Ta,b,c with
a + b + c \in \{ 10, 11\} (and min\{ a, b, c\} \geq 1). Thus, since | H| = | P1| \geq 3, we know
H /\in \scrF .

Let \scrQ = \{ Q1, Q2, . . . , Qs\} be a partition of H. Now \scrQ \cup (\scrP \setminus \{ P1\} ) is a partition of
G, and (3.1) implies \rho H(\scrQ ) = \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) - \rho G(\scrP )+14 \geq \rho G(\scrQ \cup (\scrP \setminus \{ P1\} ))+1.
If \scrQ is a nontrivial partition of H, then \scrQ \cup (\scrP \setminus \{ P1\} ) is a nontrivial partition of G,
and so Claim 10(a) implies \rho H(\scrQ ) \geq \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) + 1 \geq 8. If \scrQ is the trivial
partition of H, then \rho H(\scrQ ) \geq \rho G(\scrQ \cup (\scrP \setminus \{ P1\} )) + 1 \geq 1. By Lemma 3.8(a), the
subgraph H is strongly \BbbZ 7-connected, which contradicts Claim 9.

Now we can strengthen Claim 12(b).
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t t
t tt

t
Fig. 6. The graph T \circ \circ \circ 

4,4,4.

Claim 20. If [X,Xc] is an edge cut with | X| \geq 2 and | Xc| \geq 3, then | [X,Xc]| \geq 12.

Proof. Let X satisfy the hypotheses, and let \scrP = \{ X,Xc\} . We will prove
\rho G(\scrP ) \geq 21. Assume, to the contrary, that \rho G(\scrP ) \leq 20. Let H = G[X], and let
\scrQ = \{ Q1, . . . , Qs\} be a partition of H. Let \scrP \prime = \scrQ \cup \{ Xc\} . Equation (3.1) implies
\rho H(\scrQ ) = \rho G(\scrP \prime ) - \rho G(\scrP ) + 14. Since | Xc| \geq 3, Claim 19 implies \rho G(\scrP \prime ) \geq 14. Thus
\rho H(\scrQ ) \geq 14 - 20 + 14 = 8. By Lemma 3.8(b), subgraph H is strongly \BbbZ 7-connected,
which contradicts Claim 10(b). So 21 \leq \rho G(\scrP ) = 2| [X,Xc]|  - 34 + 31, which implies
| [X,Xc]| \geq 12.

The value of Claim 20 is that it allows us to lift three pairs of edges and know
that the resulting graph G\prime is still 6-edge-connected. Thus, we will show that G\prime is
strongly \BbbZ 7-connected, since it satisfies the hypotheses of Lemma 3.8(c-i).

Claim 21. G contains no copy of T \circ \circ \circ 
4,4,4.

Proof. Suppose G contains a copy of T \circ \circ \circ 
4,4,4 with vertices v1, v2, v3, w1, w2, w3 and

d(vi) = 8 and d(wi) = 2 for all i and N(wi) = \{ v1, v2, v3\} \setminus \{ vi\} . See Figure 6.
Form G\prime from G by lifting the pair of edges incident to each vertex wi and contract-
ing the resulting T4,4,4. This is a lifting reduction of the first type. Since T4,4,4 is
strongly \BbbZ 7-connected by Lemma 3.6, it suffices to show that G\prime is also strongly \BbbZ 7-
connected. Claims 20 and 16 imply that G\prime is 6-edge-connected. If Q\prime = \{ V (G\prime )\} ,
then \rho G\prime (Q\prime ) = 0  - 17 + 31 = 14. Each other partition \scrP \prime of G\prime corresponds to a
normal partition \scrP of G in which the contracted vertex is replaced by \{ v1, v2, v3\} .
We show below that for such a partition we can strengthen Claim 19 to \rho G(\scrP ) \geq 15.
Then we have \rho G\prime (\scrP \prime ) \geq \rho G(\scrP )  - 2(6) \geq 3, since at most six edges are counted
in \rho G(\scrP ) but not in \rho G\prime (\scrP \prime ). Thus, \rho (G\prime ) \geq 3, so Lemma 3.8(c-ii) implies that
G\prime is strongly \BbbZ 7-connected, which is a contradiction. Now it suffices to show that
\rho G(\scrP ) \geq 15.

Suppose, to the contrary, that \rho G(\scrP ) \leq 14. Let P1 be the part of \scrP containing
\{ v1, v2, v3\} , and let H = G[P1]. We will show that H is strongly \BbbZ 7-connected,
which gives a contradiction. Let \scrQ = \{ Q1, . . . , Qs\} be a partition of H. Let \scrP \prime \prime =
\scrQ \cup (\scrP \setminus \{ P1\} ). Equation (3.1) implies \rho H(\scrQ ) = \rho G(\scrP \prime \prime ) - \rho G(\scrP )+14 \geq \rho G(\scrP \prime \prime ) \geq 0.
Further, if \scrQ is a nontrivial partition of H, then \scrP \prime \prime is a nontrivial partition of G,
so Claim 10 implies \rho H(\scrQ ) \geq \rho G(\scrP \prime \prime ) \geq 7. Since H contains T3,3,3 by construction,
and G does not contain T2,2,4, we know that H /\in \scrF . To apply Lemma 3.8(c-i), we
show that H is 6-edge-connected. Consider a bipartition \scrQ = \{ Q1, Q2\} of H. Since
\scrQ is nontrivial, 7 \leq \rho G(\scrP \prime \prime ) \leq \rho H(\scrQ ) = 2| [Q1, Q2]H |  - 2(17) + 31, which implies
| [Q1, Q2]H | \geq 5. That is, H is 5-edge-connected. If H is 6-edge-connected, then
Lemma 3.8(c-i) implies that H is strongly \BbbZ 7-connected, which is a contradiction. So
assume H has a bipartition \scrQ = \{ Q1, Q2\} with | [Q1, Q2]H | = 5. By symmetry, we
assume | Q1| \geq | Q2| . Since H contains T3,3,3 and T3,3,3 is 6-edge-connected, we know
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that | Q1| \geq 3. Now \rho G(\scrP \prime \prime ) = \rho G(\scrP ) + 2(5)  - 17 \leq 14  - 7 = 7. Since \scrP \prime \prime is normal
with | Q1| \geq 3, this contradicts Claim 10.

3.3. Discharging. Fix a plane embedding of a planar graph G such that \rho (G) \geq 
0. (We assume that all parallel edges between two vertices v and w are embedded
consecutively, in the cyclic orders, around both v and w.) If G has a cut-vertex, then
each block of G is strongly \BbbZ 7-connected by minimality, so G is strongly \BbbZ 7-connected
by Lemma 1.6, which is a contradiction. Hence G is 2-connected. Since \rho (G) \geq 0,
we have 2\| G\|  - 17| G| + 31 \geq 0. By Euler's formula, | G| + | F (G)|  - \| G\| = 2. Now
solving for | G| and substituting into the inequality gives\sum 

f\in F (G)

\ell (f) = 2\| G\| \leq 34

15
| F (G)|  - 2

5
.

We assign to each face f initial charge \ell (f). So the total charge is strictly less than
34| F (G)| /15. To reach a contradiction, we redistribute charge so that each face ends
with charge at least 34/15. We use the following three discharging rules.

(R1) Each 2-face takes charge 2/15 from each weakly adjacent 3+-face.
(R2) Each 3-face takes charge 2/15 from each weakly adjacent 4+-face with which

its parallel edge has multiplicity at most 3 and 1/30 from each weakly adjacent
4+-face with which its parallel edge has multiplicity 4.

(R3) After (R1) and (R2), each 3-face with more than 34/15 splits its excess equally
among weakly adjacent 3-faces with less than 34/15.

Now we show that each face ends with charge at least 34/15. By (R1) each 2-face
ends with 2 + 2(2/15) = 34/15. Consider a 5+-face f . Since G contains no copy of
6K2, each edge of f has mutliplicity at most 5. So face f sends at most 4(2/15) across
each of its edges by (R1) and (R2). Thus f ends with at least \ell (f)  - 4(2/15)\ell (f) =
7\ell (f)/15 \geq 35/15. Consider a 4-face f . Since G contains no copy of T \bullet 

1,1,5, each edge
of f has multiplicity at most 4. So f sends at most 3(2/15) + 1/30 = 13/30 across
each of its edges. Thus, f ends with at least 4 - 4(13/30) = 34/15.

Let f be a 3-face Ta,b,c. If a + b + c \leq 8, then f ends (R2) with at least 3  - 
(8  - 3)(2/15) = 35/15. So assume a + b + c \geq 9. Since G has no T1,1,5, we know
max\{ a, b, c\} \leq 4. Since G has no T2,2,4, if max\{ a, b, c\} = 4, then min\{ a, b, c\} = 1.
Thus, each 3-face Ta,b,c finishes (R1) with excess charge at least 1/15 unless Ta,b,c \in 
\{ T1,4,4, T3,3,3\} . So we only need to consider T1,4,4 and T3,3,3. Suppose f is T1,4,4.
Each face adjacent to f across an edge of multiplicity 4 is not a 3-face, since G has no
T \circ 
1,1,5. So f ends (R2) with at least 3 - (9 - 3)(2/15)+ 2(1/30) = 34/15. Hence, each

3-face f ends (R2) with at least 35/15 unless f \in \{ T3,3,3, T1,4,4\} , and if it is T1,4,4

then it ends (R2) with at least 34/15.
Finally, assume that f is T3,3,3. If any weakly adjacent face is not a 3-face,

then f ends (R2) with at least 3  - (9  - 3)(2/15) + 2/15 = 35/15. So assume each
adjacent face is a 3-face. If these three adjacent faces do not intersect outside f ,
then G contains a copy of T \circ \circ \circ 

4,4,4, a contradiction. If all three faces intersect outside
f , then | V (G)| = 4, which contradicts Claim 14. So assume that exactly two faces
adjacent to f intersect outside f . Let f1 and f2 denote the 3-faces adjacent to f
that intersect outside f . Denote the boundaries of f , f1, and f2 by (respectively)
vwx, vwy, and wxy. Recall that \delta (G) \geq 10, by Claim 16. Thus, \mu (wy) \geq 4. Hence
f1, f2 /\in \{ T3,3,3, T1,4,4\} , so each of f1 and f2 ends (R2) with at least 35/15. Thus,
by (R3) each gives f at least (1/2)(1/15). As a result, f ends (R3) with at least
3 - (9 - 3)(2/15) + 2(1/2)(1/15) = 34/15. This completes the proof.
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Appendix: Proofs of Lemmas 3.6 and 3.7.

Lemma 3.6. Each of the following graphs is strongly \BbbZ 7-connected: 6K2, 3K
+
4 ,

and every 6-edge-connected graph Ta,b,c where a+ b+ c = 12.

Proof. Throughout we fix a \BbbZ 7-boundary \beta and construct an orientation to
achieve \beta .

Let G = 6K2, with V (G) = \{ v1, v2\} . To achieve \beta (v1) \in \{ 0, 1, 2, 3, 4, 5, 6\} , the
number of edges we orient out of v1 is (respectively) 3, 0, 4, 1, 5, 2, 6.

Let G = Ta,b,c, with a+ b+ c = 12 and \delta (G) \geq 6. (We handle this before 3K+
4 .)

Let V (G) = \{ v1, v2, v3\} . If G contains a 6-vertex, say v1, then \mu (v2v3) = 6. Since
G/v2v3 \sim = 6K2 is strongly \BbbZ 7-connected, G is strongly \BbbZ 7-connected by Lemma 1.6(ii).
So assume that \delta (G) \geq 7. If G contains a 7-vertex vi and \beta (vi) \not = 0, then we orient 5
edges incident to vi to achieve \beta (vi) and lift the remaining pair of nonparallel edges
to form a new edge. We are done, since 6K2 is strongly \BbbZ 7-connected. If G contains
an 8-vertex vj and \beta (vj) /\in \{ 1, 6\} , then we orient 4 edges incident to vj to achieve
\beta (vj) and lift two pairs of nonparallel edges to form new edges. Again we are done,
since 6K2 is strongly \BbbZ 7-connected. Since \| G\| = 12 and \delta (G) \geq 7, the possible degree
sequences of G are (a) \{ 7, 7, 10\} , (b) \{ 7, 8, 9\} , and (c) \{ 8, 8, 8\} . The edge multiplicities
of G are the three values \| G\|  - d(vi). So G is (a) T2,5,5, (b) T3,4,5, or (c) T4,4,4. In
each case we assume d(v1) \leq d(v2) \leq d(v3). In (a) we may assume \beta (v1) = \beta (v2) = 0,
which implies \beta (v3) = 0. To achieve this boundary, orient all edges out of v1 and all
edges into v2. In (b) we may assume \beta (v1) = 0, \beta (v2) = 1, and \beta (v3) = 6. To achieve
this boundary, orient all edges out of v2 and all edge into v1. (If instead \beta (v2) = 6 and
\beta (v3) = 1, then we reverse the direction of all edges.) In (c) we assume \beta (vi) \in \{ 1, 6\} 
for all i. This yields a contradiction, since

\sum 3
i=1 \beta (vi) \equiv 0 (mod 7).

Let G = 3K+
4 with V (G) = \{ v1, v2, v3, v4\} and d(v1) = d(v2) = 9 and d(v3) =

d(v4) = 10. Similar to the previous paragraph, we may assume \beta (v1) = \beta (v2) = 0,
\beta (v3) = 1, and \beta (v4) = 6. (If not, then we can lift some edges pairs at vi and use
the remaining edges incident to vi to achieve \beta (vi).) To achieve this boundary, start
by orienting all edges out of v1, all edges into v2, and all edges v4v3 out of v4. Now
reverse one copy of v3v2 and reverse one copy of v1v4.

Lemma 3.7. The graph 5C=
4 is strongly \BbbZ 7-connected. Further, if G is a graph

with | G| = 4, \| G\| = 19, \mu (G) \leq 5, and \delta (G) \geq 8, then G is strongly \BbbZ 7-connected.

Proof. Assume G satisfies the hypotheses (either the first or second), and let
V (G) = \{ v1, v2, v3, v4\} . Our plan is to form a new graph Gi from G by lifting one,
two, or three pairs of edges incident to vi, using the remaining edges incident to vi
to achieve the desired boundary \beta (vi) at vi. This is a lifting reduction of the second
type. If \| Gi\| \geq 12 and Gi is 6-edge-connected, then Gi is strongly \BbbZ 7-connected by
Lemma 3.6, and so we can find an orientation to achieve the \beta boundary of G. We
will show that in every case we can construct such a Gi and achieve \beta (vi) using edges
incident to vi that are not lifted to form Gi.

Denote V (5C=
4 ) by \{ v1, v2, v3, v4\} , with N(v1) = N(v3) = \{ v2, v4\} , and fix a \BbbZ 7-

boundary \beta . If \beta (v1) \in \{ 1, 3, 4, 6\} , then we lift three pairs of edges incident to v1 and
use the remaining edges to achieve \beta (v1). Notice that the resulting graph G1 satisfies
\| G1\| = 12, and we are done in this case. So, by symmetry, we assume \beta (vi) \in \{ 0, 2, 5\} 
for each i. The possible multisets of \beta values are \{ 0, 0, 0, 0\} , \{ 0, 0, 2, 5\} , and \{ 2, 5, 2, 5\} .
Up to symmetry, we have five possible \BbbZ 7-boundaries. Figure 7 shows orientations
that achieve these.
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Fig. 7. Orientations achieving the possible boundaries with \beta (vi) \in \{ 0, 2, 5\} for all i.

Now we prove the second statement. Suppose G contains an 8-vertex vi. To
form Gi, we lift one (arbitrary, nonparallel) pair of edges incident to vi. Now \| Gi\| =
19  - 8 + 1 = 12. If Gi contains a copy of 6K2, then we are done by Lemma 1.6,
since 6K2 is strongly \BbbZ 7-connected, and contracting this copy of 6K2 yields another
6K2. So instead we assume \mu (Gi) \leq 5. The edge-connectivity of Gi is \delta (Gi) =
\| Gi\|  - \mu (Gi) \geq 12 - 5 = 7. Since Gi is 6-edge-connected, we are done by Lemma 3.6.
Hence, we assume that \delta (G) \geq 9 below.

Suppose some pair vi, vj of vertices has no edges joining it; that is, \mu (vivj) = 0.
By symmetry, we assume i = 1 and j = 2. Since d(v1) \geq 9 and d(v2) \geq 9, we get that
\mu (v1v3) + \mu (v1v4) \geq 9 and \mu (v2v3) + \mu (v2v4) \geq 9. Since G has no 6K2, each edge of
the 4-cycle v1v3v2v4 has multiplicity at least 4. Either \mu (v1v3) = 5 or \mu (v1v4) = 5; by
symmetry we assume the latter. If \mu (v3v4) = 1, then we lift edge v1v3, v3v4 to form a
new copy of v1v4. We contract the resulting 6K2 induced by \{ v1, v4\} . The resulting
graph G\prime is T3,4,5, so we are done by Lemmas 1.6 and 3.6. Instead assume \mu (v1v3) = 0.
Now G = 5C - 

4 (formed from 5C4 by deleting a single edge). Thus G contains 5C=
4

as a spanning subgraph, and so G is strongly \BbbZ 7-connected by Lemma 3.6. Thus, we
assume \mu (vivj) \geq 1 for all distinct i, j \in [4].

Suppose \mu (vivj) = 5 for some distinct i, j \in [4]; by symmetry, say \mu (v1v1) = 5.
Since \mu (v1v3) \geq 1 and \mu (v2v3) \geq 1, we lift one copy of each of v1v3 and v3v2 to form
a new copy of v1v2 and then contract \{ v1, v2\} (calling the new vertex w). Denote
this new graph by G\prime . We show that G\prime is strongly \BbbZ 7-connected, which implies
the result for G by Lemma 1.6, since 6K2 is strongly \BbbZ 7-connected. We first show
that G is 8-edge-connected. Each edge cut separating a single vertex vi has size
d(vi) \geq \delta (G) \geq 8. If an edge cut S separates G into two parts of size 2, then
| S| \geq \| G\|  - 2\mu (G) \geq 19  - 2(5) = 9. Thus, G is 8-edge-connected, which implies
that G\prime is 6-edge-connected. Since \| G\| = 19, we have \| G\prime \| = 19  - 7 = 12. So
G\prime is strongly \BbbZ 7-connected, by Lemma 3.6. Thus G is strongly \BbbZ 7-connected by
Lemma 1.6(ii). This implies that \mu (vivj) \leq 4 for each pair i, j \in [4].

Suppose that \mu (vivj) = 1 for some pair i, j \in [4], say \mu (v1v2) = 1. Since d(v1) \geq 9
and d(v2) \geq 9 and \mu (G) \leq 4, we have \mu (v1v3) = \mu (v1v4) = \mu (v2v3) = \mu (v2v4) = 4.
Since \| G\| = 19, this implies \mu (v3v4) = 2; see Case 1 in Figure 8. By orienting 5 edges
incident to a vertex vi we can achieve any boundary value \beta (vi) other than 0. So if
\beta (v1) \not = 0 or \beta (v2) \not = 0, then we achieve it by orienting 5 incident edges and lifting two
pairs of incident edges to reduce to a 6-edge-connected subgraph Gi with \| Gi\| = 12.
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Fig. 8. In each case v1 is at top, v2 center, v3 left, and v4 right.

Similarly, by orienting 4 edges incident to a vertex vi we can achieve any boundary
value at vi other than 1 or 6. So if \beta (v3) /\in \{ 1, 6\} or \beta (v4) /\in \{ 1, 6\} , then we achieve
\beta (vi) by orienting 4 edges incident to vi and lifting 3 pairs of incident edges; we do
this so that the three newly created edges in Gi are not all parallel. Since \mu (G) \leq 4
we have \mu (Gi) \leq 6. Now we can finish on Gi, by Lemma 3.6. Thus, by symmetry
between v3 and v4, we assume \beta (v1) = \beta (v2) = 0, \beta (v3) = 1, and \beta (v4) = 6. Case 1
in Figure 8 shows an orientation achieving this boundary. So in what remains we
assume that \mu (vivj) \geq 2 for each pair i, j \in [4].

Since \| G\| = 19 and \delta (G) \geq 9, the degree sequence is either \{ 9, 9, 9, 11\} or
\{ 9, 9, 10, 10\} . Suppose we are in the first case. By symmetry, we assume d(v4) = 11,
\mu (v1v4) = \mu (v2v4) = 4, and \mu (v3v4) = 3. Since d(v1) = d(v2) = d(v3) = 9 and
\mu (v1v2)+\mu (v1v3)+\mu (v2v3) = 8, we have \mu (v1v2) = 2 and \mu (v1v3) = \mu (v2v3) = 3. See
Case 2 of Figure 8. If \beta (vi) \not = 0 for any i \in \{ 1, 2, 3\} , then we achieve \beta (vi) by orienting
5 edges incident to vi, and we lift two pairs of incident edges to form Gi, which is
6-edge-connected and has \| Gi\| = 12. So we assume \beta (v1) = \beta (v2) = \beta (v3) = 0. This
implies that also \beta (v4) = 0. Case 2 in Figure 8 shows an orientation achieving this
boundary.

Finally, assume the degree sequence is \{ 9, 9, 10, 10\} and \mu (vivj) \geq 2 for each pair
i, j \in [4]. If \mu (vivj) \geq 3 for each pair i, j \in [4], then G \sim = 3K+

4 , which contradicts
Lemma 3.6. So assume by symmetry that \mu (v1v2) = 2. First suppose that d(v1) = 10.
This implies \mu (v1v3) = \mu (v1v4) = 4. Since each edge has multiplicity 2, 3, or 4, we
cannot have d(v2) = 10 (because otherwise \mu (v3v4) = 1). So d(v2) = 9 and, by
symmetry between v3 and v4, we assume d(v3) = 9 and d(v4) = 10. This implies that
\mu (v2v3) = 3, \mu (v2v4) = 4, and \mu (v3v4) = 3; see Case 3 of Figure 8. As above, we can
lift two or three pairs of incident edges if either \beta (v2) \not = 0, \beta (v3) \not = 0, \beta (v1) /\in \{ 1, 6\} ,
or \beta (v4) /\in \{ 1, 6\} . So we assume \beta (v2) = \beta (v3) = 0, \beta (v1) = 1, and \beta (v4) = 6. (If,
instead, \beta (v2) = \beta (v3) = 0, \beta (v1) = 6, and \beta (v4) = 1, then we can achieve this by
reversing every edge.) The desired orientation is shown in Case 3 of Figure 8.

Again assume the degree sequence is \{ 9, 9, 10, 10\} and that \mu (v1v2) = 2. Rather
than as above, we now assume d(v1) = d(v2) = 9. So d(v3) = d(v4) = 10. By
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symmetry between v3 and v4 (and also between v1 and v2) we assume \mu (v1v3) =
\mu (v2v4) = 3, \mu (v1v4) = \mu (v2v3) = 4, and \mu (v3v4) = 3. For the same reasons as in the
previous paragraph, we assume \beta (v1) = \beta (v2) = 0, \beta (v3) = 1, and \beta (v4) = 6. Now
the desired orientation is shown in Case 4 of Figure 8. This completes the proof.

Acknowledgment. Thanks to an anonymous referee for reading a previous ver-
sion very carefully. In particular, the referee caught one omitted case (which we have
now handled) and offered numerous suggestions to improve wording.
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