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Abstract
In this paper we study the flow properties of graphs containing a spanning triangle-

tree. Our main results provide a structure characterization of graphs with a spanning

triangle-tree admitting a nowhere-zero 3-flow. All these graphs without nowhere-

zero 3-flows are constructed from K4 by a so-called bull-growth operation. This

generalizes a result of Fan et al. in 2008 on triangularly-connected graphs and

particularly shows that every 4-edge-connected graph with a spanning triangle-tree

has a nowhere-zero 3-flow. A well-known classical theorem of Jaeger in 1979

shows that every graph with two edge-disjoint spanning trees admits a nowhere-zero

4-flow. We prove that every graph with two edge-disjoint spanning triangle-trees

has a flow strictly less than 3.

Keywords Nowhere-zero flow � 3-Flow flow index � Triangularly-connected �
Triangle-tree � 2-Tree

Mathematics Subject Classification 05C21 � 05C40 � 05C05

1 Introduction

We shall introduce some necessary notation and terminology and the concepts of

3-flows, circular flows and group connectivity in the next subsections.

& Xueliang Li

lxl@nankai.edu.cn

Jiaao Li

lijiaao@nankai.edu.cn

Meiling Wang

Estellewml@gmail.com

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

2 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

123

Graphs and Combinatorics (2020) 36:1797–1814
https://doi.org/10.1007/s00373-020-02220-6(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-020-02220-6&amp;domain=pdf
https://doi.org/10.1007/s00373-020-02220-6


1.1 Nowhere-Zero 3-Flows

Graphs considered here may contain parallel edges, but no loops. We follow the

textbook [3] for undefined terminology and notation. For a graph G, we use V(G)
and E(G) to denote the vertex set and edge set of G, respectively. When S is an edge

subset of E(G) or a vertex subset of V(G), we use G[S] to denote the edge-induced

subgraph or the vertex-induced subgraph from S. For a vertex u 2 VðGÞ, dGðuÞ
denotes the degree of u in G. Sometimes the subscript is omitted for convenience.

We call u a k-vertex (kþ-vertex, resp.) if dðuÞ ¼ k (dðuÞ� k, resp.). A k-cut is an
edge-cut of size k. Let D be an orientation of G. The set of outgoing arcs incident to

u is denoted by Eþ
DðuÞ, while the set of incoming arcs is denoted by E�

DðuÞ. We use

dþD ðuÞ ¼ jEþ
DðuÞj and d�D ðuÞ ¼ jE�

DðuÞj to denote the out-degree and in-degree of u,
respectively.

Given an orientation D and a function f from E(G) to f�1;�2; . . .;�ðk � 1Þg, ifP
e2Eþ

D ðvÞ
f ðeÞ ¼

P
e2E�

D ðvÞ
f ðeÞ for each vertex v 2 VðGÞ, then we call (D, f) a

nowhere-zero k-flow, abbreviated as k-NZF. The flow theory was initiated by Tutte

[21], generalizing face-colorings of plane graphs to flows of arbitrary graphs by

duality. Tutte proposed the well-known 3-flow conjecture, which was selected by

Bondy among the Beautiful Conjectures in Graph Theory [2] with high evaluation.

Conjecture 1.1 (Tutte’s 3-flow conjecture) Every 4-edge-connected graph has a
3-NZF.

Jaeger’s 4-flow theorem [8] from 1979 shows that every 4-edge-connected graph

admits a nowhere-zero 4-flow. This theorem was proved by finding even subgraph

covers from spanning trees, and a stronger version concerning spanning trees is as

follows.

Theorem 1.1 [8] Every graph with two edge-disjoint spanning trees has a 4-NZF.

For graphs with higher edge-connectivity, breakthrough results for Conjec-

ture 1.1 were obtained by Thomassen [20] and Lovász et al. [18], which eventually

confirmed Conjecture 1.1 for 6-edge-connected graphs.

Theorem 1.2 [18] Every 6-edge-connected graph admits a 3-NZF.

On the other hand, Kochol [11] proved that it suffices to prove Conjecture 1.1 for

5-edge-connected graphs and he also showed that Conjecture 1.1 is equivalent to the

statement that every bridgeless graph with at most three 3-cuts admits a 3-NZF.

There are infinitely many graphs with exactly four 3-cuts but admitting no 3-NZF.

Several such graph families were given in [5, 12, 13]. Most of these graphs consist

of 2-sums of K4 (defined later), and majority of their edges lie in triangles. This may

suggest that the potential minimal counterexamples to Conjecture 1.1 (or its

equivalent form) may contain many triangles. For more examples, see [4] which

characterizes all planar non vertex-3-colorable graphs with four triangles, whose

duals also contain similar structures involving four 3-cuts and many triangles.

A graph is triangular if each edge is contained in a triangle K3. Xu and Zhang

[22] suggested to consider Conjecture 1.1 for triangular graphs and they verified
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Conjecture 1.1 for squares of graphs, a subclass of triangular graphs. Other

examples of triangular graphs are the triangulations on surfaces, chordal graphs and

locally connected graphs, whose flow properties were studied in [1, 12, 13], among

others.

Definition 1.1 A triangle-tree T ðx1; x2; . . .; xnÞ is formed by starting with a triangle

x1x2x3 and then repeatedly adding vertices in such a way that each added vertex xjþ1

is connected to exactly two adjacent vertices y, z in T ðx1; x2; . . .; xjÞ. Note that the

vertices xjþ1; y; z exactly form a triangle. A 2-vertex in the triangle-tree is called a

leaf. For n� 4, a triangle-path Pðx1; x2; . . .; xnÞ is a triangle-tree with precisely two

leaves. In the trivial case n ¼ 3, Pðx1; x2; x3Þ is a triangle, also considered as a

trivial triangle-path.

A graph G is triangularly-connected if for any pair of edges e1; e2 2 EðGÞ, there
is a triangle-path containing e1 and e2.

The above-mentioned graph classes presented in [1, 12, 13, 22] are all

triangularly-connected. Fan et al. [5] obtained a complete characterization of

triangularly-connected graphs with 3-NZF using 2-sum operations. Let A, B be two

subgraphs of G. We call G the 2-sum of A and B, denoted by G ¼ Aa
2
B, if

EðGÞ ¼ EðAÞ
S
EðBÞ, jEðAÞ

T
EðBÞj ¼ 1 and jVðAÞ

T
VðBÞj ¼ 2. The wheel graph

Wk is constructed by adding a center vertex connected to each vertex of a k-cycle,
where k� 3. A wheel Wk is odd (even, resp.) if k is an odd (even, resp.) number.

Note that K4 is also viewed as the odd wheel W3.

Theorem 1.3 (Fan et al. [5]) Let G be a triangularly-connected graph. Then G has
no 3-NZF if and only if there is an odd wheel W and a subgraph G1 such that

G ¼ Wa
2
G1, where G1 is a triangularly-connected graph without 3-NZF.

In this paper, we push further to study a related graph class, i.e., graphs

containing a spanning triangle-tree. Triangularly-connected graphs may contain a

spanning triangle-tree, but graphs containing a spanning triangle-tree may not be

triangularly-connected, see Figs. 2 and 3 for instance. More detailed comparison of

these two graph classes is discussed in the last section. In fact, our main results hold

for a wider graph class (i.e., graphs containing a spanning triangularly-connected

subgraph), which includes both graphs containing a spanning triangle-tree and

triangularly-connected graphs. See Theorem 5.2 for more details.

In our characterization, we need to handle certain 3-connected graphs, and the

2-sum operation is not sufficient for this work. Thus we develop a new tool, called

the bull-growth/bull-reduction.

Definition 1.2 Let u, v be two adjacent 3-vertices of a graph G with a common

neighbor w. The third neighbor of u and v is denoted by a and b, respectively. Let
G1 ¼ G� u� vþ ab (and we delete possible loops when a ¼ b). Then G1 is called

the bull-reduction of G, and G is a bull-growth of G1 (see Fig. 1), and we write

G ¼ B
U
G1.
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Theorem 1.4 Let G be a graph containing a spanning triangle-tree. Then G has no
3-NZF if and only if G ¼ B

U
G1, where G1 contains a spanning triangle-tree and

has no 3-NZF. In other words, G has no 3-NZF if and only if G is formed from K4 by
a series of bull-growth operations.

Since each step of the bull-growth operation on a graph does not decrease the

number of 3-vertices in the graph, we obtain a direct corollary of Theorem 1.4,

verifying Conjecture 1.1 for those graphs in a strong sense.

Corollary 1.1 Every graph with a spanning triangle-tree and with at most three
3-vertices has a 3-NZF.

1.2 Circular Flows and Group Connectivity

For integers t� 2s[ 0, a circular t/s-flow of a graph G is a t-NZF (D, f) such that

s� jf ðeÞj� t � s for any edge e 2 EðGÞ. The flow index was defined in [6] as the

least rational number r such that G has a circular r-flow. Jaeger [9] generalized

Tutte’s flow conjectures and proposed a conjecture that every 4k-edge-connected
graph admits a circular ð2þ 1=kÞ-flow. It was confirmed for 6k-edge-connected
graph by Lovász et al. [18], while eventually disproved in [7] for k� 3. But the

cases for k ¼ 1; 2 concerning 4-, 8-edge-connected graphs are still particularly

important since they imply Tutte’s 3-flow and 5-flow conjectures, respectively.

Closely related to those conjectures, the authors in [17] studied the problem of flow

index less than 3, sandwiched between 2.5 and 3. They proved that every 8-edge-

connected graph has a flow index strictly less than 3, and conjectured that 6-edge-

connectivity suffices. Here we obtain a result for the flow index less than 3 in the

spirit of Theorem 1.1.

Theorem 1.5 Every graph with two edge-disjoint spanning triangle-trees has a flow
index strictly less than 3.

Almost of all the above-mentioned flow results in fact use some orientation

techniques. An orientation D of G is a mod k-orientation if for each vertex v of

V(G), dþD ðvÞ � d�D ðvÞ ¼ 0ðmod kÞ. The study of 3-flows frequently uses mod 3-

orientation, since Tutte [21] proved that a graph has a 3-NZF if and only if it admits

a mod 3-orientation. This fact was generalized by Jaeger [9] who showed that a

graph has a circular ð2þ 1=pÞ-flow if and only if it admits a mod ð2pþ 1Þ-
orientation. Moreover, it was proved in [17] that a connected graph has a flow index

strictly less than 2þ 1=p if and only if it admits a strongly connected mod ð2pþ 1Þ-

Fig. 1 Bull-reduction and bull-growth
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orientation. Hence, we shall prove Theorem 1.5 using strongly connected mod

3-orientations.

Serving for a stronger induction process in proof, we will sometimes need certain

orientation with prescribed boundaries, that is the concept of group connectivity
introduced by Jaeger et al. [10]. For more on the group connectivity, we refer to

[15]. A Z3-boundary b of a graph G is a mapping from V(G) to Z3 withP
v2VðGÞ bðvÞ � 0ðmod 3Þ. If for any Z3-boundary b, there is an orientation D of G

such that dþD ðvÞ � d�D ðvÞ � bðvÞðmod 3Þ for any vertex v 2 VðGÞ, then we say that

G is Z3-connected. Denote by hZ3i the set of all the Z3-connected graphs. The

advantage of this stronger property is to allow us to extend a mod 3-orientation

of G/H to that of G when the subgraph H is Z3-connected (cf. [10, 12, 18]).

For strongly connected mod 3-orientations, a similar property is defined in [17].

Let S3 be the family of all graphs G such that for any Z3-boundary b, there is a

strongly connected orientation D of G satisfying that

dþD ðuÞ � d�D ðuÞ � bðuÞðmod 3Þ; 8u 2 VðGÞ. In fact, a stronger form of Theorem 1.5

is proved in Sect. 4 that for any graph G with jVðGÞj � 4 containing two edge-

disjoint spanning triangle-trees, we have G 2 S3.

Jaeger et al. [10] proposed a conjecture, strengthening Conjecture 1.1, that every

5-edge-connected graph is Z3-connected. Theorem 1.3 above also has a form on Z3-

group connectivity in Fan et al. [5]: for any triangularly-connected graph G, G 62
hZ3i if and only if G is constructed from 2-sums of triangles and odd wheels(see

Theorem 5.1 in Sect. 5). Our Z3-group connectivity version of Theorem 1.4 has a

similar feature, with additional bull-growth operations.

Theorem 1.6 Let G be a graph with a spanning triangle-tree. Then G 62 hZ3i if and
only if G can be constructed by one of the following operations:

(i) G is K3 or K4.

(ii) G ¼ K3a2
G1, where G1 62 hZ3i contains a spanning triangle-tree.

(iii) G ¼ B
U
H, where H 62 hZ3i contains a spanning triangle-tree.

Theorem 1.6 also verifies the the special case of the conjecture of Jaeger et al.

[10] for Z3-connectedness on 4-edge-connected graphs containing a spanning

triangle-tree.

A crystal is a graph consisting of a triangle-path plus an extra edge connecting

two leaves of the triangle-path. For instance, a wheel is a crystal by definition, and

some more examples are depicted in Fig. 3. Crystals are special graphs containing a

spanning triangle-tree, and also play a role in our proofs. We obtain the following

characterization of crystals as corollaries of Theorems 1.4 and 1.6, connecting flows

and vertex-coloring of crystals.

Corollary 1.2

(i) A crystal has no 3-NZF if and only if every vertex is of odd degree.

(ii) A crystal is Z3-connected if and only if it is vertex-3-colorable.
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2 Basic Lemmas and Bull-Growth Operation

We start with some basic lemmas, most of which have been widely used in flow

theory. The following complete family properties were obtained in [12] for hZ3i and
in [17] for S3. Here we use sK2 to denote the graph with two vertices and s parallel
edges.

Lemma 2.1 [12] [17] Let F 2 fhZ3i;S3g. Then each of the following holds.

(i) K1 2 F .

(ii) If e 2 EðGÞ and G 2 F , then G=e 2 F .

(iii) If H;G=H 2 F , then G 2 F .

(iv) 2K2 2 hZ3i and 4K2 2 S3.

The lifting lemma below on flows is routine to verify by definitions, as observed

in [14, 16]. When va; vb 2 EGðvÞ, let G½v;ab� ¼ G� va� vbþ ab denote the graph

obtained from G by lifting va, vb to become ab.

Lemma 2.2 [14] [16] Let v be a 4þ-vertex of a graph G with va; vb 2 EGðvÞ.
(i) If G½v;ab� 2 hZ3i, then G 2 hZ3i.
(ii) If G½v;ab� has a 3-NZF, then so does G.

(iii) If G½v;ab� 2 S3, then so does G.

(iv) If G� vþ ab 2 S3, then so does G.

By repeatedly applying Lemma 2.2(i), we immediately obtain the following more

general lifting lemma, which will be a useful tool in our proofs.

Lemma 2.3 Let P be a path from u to v in G. If G� EðPÞ þ uv 2 hZ3i, then
G 2 hZ3i.

We refer to this operation as lifting E(P) in G to become a new edge uv.
In a tree T, for any u; v 2 VðTÞ there is a unique uv-path from u to v, denoted by

Puv. A uwv-path means a path from u to v which goes through w, denoted by Puwv.

Fix a triangle-tree T and let x; y 2 VðT Þ [ EðT Þ be two nonadjacent elements.

There is a shortest xy-triangle-path from x to y, denoted by Pðx; y; T Þ. That is a

sequence of triangles R1;R2; . . .;Rs from x to y with jEðRiÞ \ EðRiþ1Þj ¼ 1 and

jEðRiÞ \ EðRjþ1Þj ¼ 0 for 1� i� s� 1 and j[ iþ 1. We write Pðx; yÞ for

convenience if no confusion occurs.

Lemma 2.4 Let G be a graph containing a spanning triangle-tree
T ¼ T ðx1; x2; . . .; xnÞ, where x1 is a leaf of T .

(i) For any j; k[ 1, the graph T þ x1xj þ x1xk is Z3-connected.

(ii) Let u; v;w 2 VðT Þ. If w 62 VðPðu; v; T ÞÞ, then the graph T þ uwþ vw is

Z3-connected.

(iii) If G� T contains a cycle, then G 2 hZ3i.
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Proof

(i) Since x1x2x3 is a triangle in H ¼ T þ x1xj þ x1xk, we lift x1x2; x1x3 to

obtain a graph H½x1;x2x3� which contains parallel edges x2x3. Applying

Lemma 2.1(iii), (iv) to contract 2-cycles consecutively along T � x1, we
obtain a 2K2 2 hZ3i which consists of the edges x1xj; x1xk. Hence,

H½x1;x2x3� 2 hZ3i, and so H 2 hZ3i by Lemma 2.2(i).

(ii) Since w is not in Pðu; v; T Þ, in T there is a shortest triangle-path P from

w to an edge in Pðu; v; T Þ among all possible choices. Then Pðu; v; T Þ [
P is a triangle-tree, where w is a leaf of it. Set

H ¼ Pðu; v; T Þ [ P þ uwþ vw. Then H 2 hZ3i by Lemma 2.4(i). Note

that H is a subgraph of T þ uwþ vw. In T þ uwþ vw, we contract H and

then contract the resulting 2-cycles consecutively. Eventually we get a

K1. Hence T þ uwþ vw 2 hZ3i by Lemma 2.1(iii). Note that the Lemma

also holds when u ¼ v, in which case we can choose any triangle

containing u as Pðu; v; T Þ.
(iii) Let C be a cycle of G� T . If VðCÞ ¼ 2, there is a 2-cycle uw of G. Then

Lemma 2.4(ii) is applied with u ¼ v, and so H1 ¼ T þ uwþ uw is Z3-

connected. As both H1 and G=H1 are Z3-connected, we have G 2 Z3 by

Lemma 2.1(iii).

If VðCÞ� 3, suppose u; v;w 2 VðCÞ, and E(C) consists of three edge-disjoint paths

Puv;Pvw;Pwu in the cyclic order. There is a triangle-path Pðu; v; T Þ since T is a

spanning triangle-tree. If w 62 VðPðu; v; T ÞÞ, then we lift Pvw;Pwu to become two

edges vw, uw, and T þ vwþ uw 2 hZ3i by Lemma 2.4(ii). Thus, G 2 hZ3i by

Lemma 2.3. If w 2 VðPðu; v; T ÞÞ, then we must have u 62 VðPðw; v; T ÞÞ. In this

case we lift Pvu;Pwu to become two edges vu, wu. Hence, T þ vuþ wu 2 hZ3i by
Lemma 2.4(ii), and so G 2 hZ3i by Lemma 2.1 again. h

Note that, if any added edges in Lemma 2.4(i) and (ii) are replaced by

corresponding paths connecting the end vertices, we get Z3-connected graphs by

Lemma 2.3. From Lemma 2.4, we also obtain the following corollary by applying

Lemma 2.1 to contract Z3-connected subgraphs.

Corollary 2.1 Let G be a graph with a spanning triangle-tree. Then G 2 hZ3i if and
only if it contains a nontrivial Z3-connected subgraph.

Proof Let H be a nontrivial Z3-connected subgraph and T a spanning triangle-tree

of G. If EðT Þ \ EðHÞ 6¼ ;, then in G we contract the Z3-connected subgraph H and

then repeatedly contract 2-cycles to eventually get a singleton K1. Thus, G 2 hZ3i
by Lemma 2.1(iii). Otherwise, EðT Þ \ EðHÞ ¼ ;. Since a Z3-connected graph must

be 2-edge-connected, H contains a cycle which is edge-disjoint with the spanning

triangle-tree T of G. Hence, G 2 hZ3i by Lemma 2.4(iii). h

Now we present the bull-growth operation as a key tool in our later proofs.

Lemma 2.5 Let G ¼ B
U
G1. The following statements hold.

(i) G has a 3-NZF if and only if G1 has a 3-NZF.
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(ii) If G 2 hZ3i, then G1 2 hZ3i. Conversely, if G1 62 hZ3i, then G 62 hZ3i.

Proof We adopt the notation as in Definition 1.2. Let G1 ¼ G� u� vþ ab, where
u, v are two adjacent 3-vertices with a common neighbor w. We shall verify (ii) first,

and we show G1 2 hZ3i by definition.

Let b1 be a Z3-boundary of G1. Define b : VðGÞ ! Z3 as follows:

bðuÞ ¼ bðvÞ ¼ 0;

bðxÞ ¼ b1ðxÞ; 8x 62 fu; vg:

(

Since
P

t2VðGÞ bðtÞ ¼
P

x2VðG1Þ b1ðxÞ � 0ðmod 3Þ, b is a Z3-boundary of G. As

G 2 hZ3i, G has an orientation D such that dþD ðxÞ � d�D ðxÞ �
bðxÞðmod 3Þ; 8x 2 VðGÞ. Since bðuÞ ¼ bðvÞ ¼ 0 and u, v are adjacent, one of u, v
is oriented as all ingoing and the other is oriented as all outgoing. Thus uw and vw
receive opposite orientations in D. Moreover, the edges au, vb are either oriented

from a to u and from v to b, or all receive opposite directions. So, we can orient ab
the same as au and keep the orientations of the other edges of G1 the same as D.

Then this gives an orientation D1 of G1 with dþD1
ðyÞ � d�D1

ðyÞ �
b1ðyÞðmod 3Þ; 8y 2 VðG1Þ. So, G1 2 hZ3i by definition.

Recall that a graph has a 3-NZF if and only if it has a mod 3-orientation. Thus (i)

follows from a similar argument with (ii) by replacing b1-boundary with a zero-

boundary. One may also see that the path auvb of G plays the same role as the edge

ab of G1 in a mod 3-orientation and the process can be reversed as well. h

The reverse of Lemma 2.5 (ii) is not true in general, for example, it fails when G1

is an odd wheel (and a 6¼ b in bull-growth). However, when G contains a spanning

triangle-tree, Lemma 2.5 can be strengthened as follows, which becomes a

necessary and sufficient statement.

Lemma 2.6 Let G be a graph with a spanning triangle-tree and G ¼ B
U
G1. Then

G 2 hZ3i if and only if G1 2 hZ3i.

Proof We still adopt the same notation as above and let G1 ¼ G� u� vþ ab.
Since G has a spanning triangle-tree T , at least one of the edges of T must be in

faw; bwg, say bw 2 EðT Þ. We will show below that G1 2 hZ3i implies G 2 hZ3i.
Let b : VðGÞ ! Z3 be a Z3-boundary of G. If bðuÞ 6¼ 0, we lift uw, uv to become

a new edge vw, and then delete the vertex u. Let H be the resulting graph with

corresponding boundary b1, where b1ðaÞ ¼ bðaÞ þ bðuÞ and b1ðzÞ ¼ bðzÞ; 8z 2
VðGÞnfu; ag. Then H contains a Z3-connected subgraph 2K2 which consists of two

parallel edges vw. By Corollary 2.1, we have H 2 hZ3i, and so H has an orientation

D1 satisfying boundary b1. We orient ua to satisfy bðuÞ and add vu, uw back with

their orientations kept as the lifted edge vw of D1. Specifically, we orient ua from u
to a if bðuÞ ¼ 1, and orient it from a to u if bðuÞ ¼ �1. This provides an orientation

of G satisfying boundary b.
If bðvÞ 6¼ 0, an analogous argument applies. We lift vb, vw to become a new edge

bw and delete the vertex v. Let H be the resulting graph with corresponding

boundary b1 defined similarly as above. Then the resulting graph H is in hZ3i and
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the b1-orientation of H can be extended to G by imitating the proof above.

If bðuÞ ¼ bðvÞ ¼ 0, we define a Z3-boundary b1 of G1 as b1ðxÞ ¼ bðxÞ for any
x 2 VðGÞ n fu; vg. Since G1 2 hZ3i, there is an orientation D1 of G1 satisfying b1,
where we may assume that the edge ab is oriented from a to b (the other case is

similar). Then, in G we keep the orientation of EðG1Þ � ab as in D1, and orient the

rest of edges as all ingoing to u and outgoing to v. This gives an orientation of G
satisfying boundary b as well. Therefore, G is Z3-connected by definition. h

Note that in the bull-reduction operation, the condition that G has a spanning

triangle-tree T cannot ensure that G1 contains a spanning triangle-tree. But if u or v
is a leaf of T , then the bull-reduction results in that G1 contains a spanning triangle-

tree. In the proof below, we shall always apply this operation for leaves of spanning

triangle-trees implicitly.

Lemma 2.7 [5] Let G ¼ H1a2
H2.

(i) If H1 62 hZ3i and H2 62 hZ3i, then G 62 hZ3i.
(ii) If neither H1 nor H2 has a 3-NZF, then G does not have a 3-NZF.

3 Graphs with a Spanning Triangle-Tree

Now we are ready to prove our main results, Theorems 1.6 and 1.4, for graphs

containing a spanning triangle-tree.

Proof of Theorem 1.6: If G satisfies one of (i), (ii) and (iii), then G 62 hZ3i by

Lemmas 2.6 and 2.7. Now suppose that G satisfies none of (i),(ii) or (iii). We shall

show that G 2 hZ3i by contradiction. Let G be a minimum counterexample of

Theorem 1.6 with respect to jEðGÞj þ jVðGÞj. Let T be a spanning triangle-tree of

G. It is clear that for any vertex v 2 VðGÞ, dðvÞ� 3. Otherwise, G satisfies condition

(i) or (ii). To see this, we observe that a vertex v with dðvÞ ¼ 2 is exactly a leaf of T .

So G ¼ K3a2
G1, where G1 contains a spanning triangle-tree T � v. By Corollary

2.1, we have G1 62 hZ3i, and thus condition (ii) holds.

Suppose P ¼ Pðu; vÞ is a longest triangle-path among all possible triangle-paths

in G. Let a, b be the neighbors of u on P, where a is a vertex with exactly 3

neighbors in P.
We first claim that

EðT Þ \ EðPÞ 6¼ ;: ð1Þ

It is clear that P contains a cycle. If no edge of P is in EðT Þ, then by Lemma 2.4(iii)

we have G 2 hZ3i. So, there is an edge of P in EðT Þ, and (1) holds.

Thus, for any vertex t 2 VðGÞ n VðPÞ, there is a triangle-path Pðt; eÞ from t to
some e 2 EðPÞ by (1). Denote by Pðt; etÞ the shortest one among all triangle-paths

Pðt; eÞ with e 2 EðPÞ. Note that et 62 fua; ubg; otherwise, there is a longer triangle-
path in G. If t 2 VðPÞ, we also define et ¼ ; and Pðt; etÞ ¼ ; for technical reasons.

Next, we show the following statement:
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dGðuÞ ¼ 3 and u is a leaf of T : ð2Þ

Since G does not satisfy (i) and (ii), dGðuÞ� 3. Suppose, by contradiction, that

dGðuÞ� 4, and s, d are two neighbors of u other than a, b. Let

H ¼ P [ Pðs; esÞ [ Pðd; edÞ. Then H is a triangle-tree, and moreover, u is a leaf of

H. Thus, H þ usþ ud 2 hZ3i by Lemma 2.4(i), and so G 2 hZ3i by Corollary 2.1,

which is a contradiction. So, dGðuÞ ¼ 3 and u is a leaf of T by Definition 1.1 and the

fact that P ¼ Pðu; vÞ is the longest triangle-path in G. This proves (2).
Let x be the third neighbor of u, other than a, b. Let Q ¼ Pðx; exÞ and c be third

neighbor of a on P, other than u, b. Then we have ex 62 fab; acg. Otherwise, there is
a longer triangle-path of G.

Let G0 ¼ G½a;bc� ¼ G� ab� acþ bc, and let H be a maximum hZ3i-subgraph of

G0 containing bc. Since bc is a 2-cycle, by Lemma 2.1(iii) we contract 2-cycles

consecutively to obtain that G0½VðP [ QÞ � a� 2 hZ3i, and so

VðP [ QÞ � a 	 VðHÞ:

If dGðaÞ ¼ 3, then by (2) the bull-reduction in (iii) is applied for G, and the resulting
graph has a spanning triangle-tree, a contradiction. Hence, dGðaÞ� 4. Now we claim

that

there is a neighbor y of a that is not in VðHÞ: ð3Þ

Since dGðaÞ� 4 and a has exactly 3 neighbors in P, we may let y be a neighbor of a
not in VðPÞ. If y 2 VðHÞ, then there are at least two neighbors of a, namely u and y,
in V(H). By the maximality of H and Lemma 2.1(iii), (iv), we have y 2 VðHÞ. Thus
by Lemma 2.1(iii) again, it follows from u; y 2 VðHÞ that a 2 VðHÞ. Now we

conclude that VðP [ QÞ 	 VðHÞ: Applying Lemma 2.2(i), we also have

G½VðHÞ� 2 hZ3i, and so G 2 hZ3i by Corollary 2.1, a contradiction. This verifies

(3).

Since dGðyÞ� 3 and by Lemma 2.1(iii), at most one neighbor of y is in V(H), and
so there is a neighbor z of y not in V(H). This also means that Pðz; ezÞ must intersect

P at ab or ac, w.l.o.g., say ez ¼ ac. Otherwise, we have z 2 VðHÞ, and so y 2 VðHÞ
by Lemma 2.1(iii), a contradiction.

The final step If Pðz; ezÞ is a triangle acz, see Fig. 2, then P � uþ zaþ zcþ
yaþ yz is a longer triangle-path of G, a contradiction. Otherwise, Pðz; ezÞ contains

Fig. 2 A longer triangle-path
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at least two triangles, and so P � uþ Pðz; ezÞ is a triangle-path longer than P, again
a contradiction to the maximality of P. This finishes the proof. h

Proof of Theorem 1.4 If G is formed from K4 by a series of bull-growth operations,

then it has no 3-NZF by Lemma 2.5. Conversely, assume that G has no 3-NZF.

Then, G 62 hZ3i. We apply Theorem 1.6 on G.

Suppose G ¼ K3a2
G1, where G1 contains a spanning triangle-tree T . Let abc

correspond to the K3 in the 2-sum, where a is a 2-vertex of G. Then G½a;bc� contains a

2-cycle bc, which shows G½a;bc� 2 hZ3i by Corollary 2.1, and therefore, has a 3-NZF.

Hence G has a 3-NZF by Lemma 2.2(ii), a contradiction.

Now suppose G ¼ B
U
G1, where G1 contains a spanning triangle-tree T . By

Lemma 2.5, G1 has no 3-NZF if and only if G has no 3-NZF. This proves

Theorem 1.4. h

Proof of Corollary 1.2 Let C ¼ Pðu; vÞ þ uv be a crystal, where the vertices of C are

ordered as u; x1; x2; . . .; xk; v and dCðx1Þ ¼ 3 according to Definition 1.1(see Fig. 3).

When jVðCÞj � 5, C is a wheel and the statements clearly hold. Now we proceed by

induction and assume jVðCÞj� 6.

(i) By Theorem 1.4, C has no 3-NZF if and only if it is formed from K4 by a

series of bull-growth operations. Note that the bull-growth operation keeps

the parity of degree of each vertex and each added vertex has odd degree.

Thus the fact that C has no 3-NZF would imply that each vertex has odd

degree. On the other hand, if each vertex of C is of odd degree, there is at

least one vertex of x1 and x2 adjacent to u is a 3-vertex (see Fig. 3a). Then

C ¼ B
U
ðPðx3; vÞ þ x3vÞ, where x3 is the other common neighbor of x1 and

x2, excepted u. Now Pðx3; vÞ þ x3v is smaller than C and each vertex of it

has odd degree. Thus Pðx3; vÞ þ x3v has no 3-NZF by induction, and so C
has no 3-NZF by Lemmas 2.5 and 2.7(ii).

(ii) Let w : VðPðu; vÞÞ ! fblack;white; grayg be a proper 3-coloring of Pðu; vÞ
with wðuÞ ¼ black, and let u1 be the first vertex of x1; x2; � � � ; xk; v with color

black, assume u1 ¼ x3 . Then u1 and u have two common neighbors and one

of them has degree 3. Assume dCðx1Þ ¼ 3. (see Fig. 3b). Then G1 ¼
C � u� x1 þ x3v is the bull-reduction of C and H ¼ Pðx3; vÞ þ x3v is a

crystal. Similar to (i), we have that either G1 ¼ H, or G1 consists of 2-sums

of H and triangles. If G1 consists of 2-sums of H and triangles, then by

Fig. 3 The crystals in Corollary 1.2
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Theorem 1.3, G1 2 hZ3i if and only if H 2 hZ3i. C ¼ B
U
G1, by Lemma

2.6, C 2 hZ3i if and only if G1 2 hZ3i. Thus C 2 hZ3i if and only if

H 2 hZ3i. By induction, H ¼ Pðx3; vÞ þ x3v 2 hZ3i if and only if H is

vertex-3-colorable, i.e., wðvÞ 6¼ black. Hence by Lemma 2.6, C 2 hZ3i if and
only if wðvÞ 6¼ black. Thus, (ii) holds, which completes the proof.

h

4 Two Spanning Triangle-Trees

An elementary theorem of Robbins [19] (or see Theorem 5.1 in [3]) shows that

every connected graph without cut edges has a strongly connected orientation. In

fact, such a strongly connected orientation can be easily obtained from ear-

decompositions. This motivates the following lemma.

Lemma 4.1 If G can be edge-partitioned into two spanning subgraphs G1 and G2

such that G1 2 hZ3i and G2 is 2-edge-connected, then G 2 S3.

Proof Let b be a Z3-boundary of G. We first give G2 a strongly connected

orientation D2 by Robbins’ Theorem. Suppose that the boundary of G2

corresponding to D2 is b2. Since G1 2 hZ3i, there is a mod 3-orientation D1 of

G1 for the Z3-boundary b� b2. Since both G1 and G2 are spanning and D1 is

strongly connected, D ¼ D1 [ D2 is a strongly mod 3-orientation of G for the

boundary b. That is, for any v 2 VðGÞ,

dþD ðvÞ � d�D ðvÞ ¼ ðdþD2
ðvÞ � d�D2

ðvÞÞ þ ðdþD1
ðvÞ � d�D1

ðvÞÞ
� b2ðvÞ þ ðbðvÞ � b2ðvÞÞ � bðvÞðmod 3Þ:

So, G 2 S3 by definition. h

Our strategy for the proof of Theorem 1.5 is to apply some extreme choice to find

a 2-edge-connected spanning subgraph from one triangle-tree, and then get a Z3-

connected spanning subgraph from another triangle-tree by adding some extra

edges. We will need one more proposition before proving Theorem 1.5.

Let T be a triangle-tree. We say that an edge-set X of EðT Þ is removable if

T � X is 2-edge-connected; each edge e 2 X is called a removable edge.

Proposition 1 Let T be a triangle-tree on n� 4 vertices with t leaves. Then T
contains a removable set of size at least n� t � 1.

Proof It is easy to check this fact for jVðT Þj � 5. Assume it holds for

jVðT Þj � k � 1. When jVðT Þj ¼ k, let v be the new vertex added such that abv
forms a new triangle. If neither a nor b is a leaf, then a largest removable set of T is

the same as T � v. If one of a, b is a leaf, then the edge ab is removable, and so the

size of removable set increases. By induction, the proposition holds. h

Theorem 4.1 For any graph G with jVðGÞj � 4 containing two edge-disjoint
spanning triangle-trees, we have G 2 S3.
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Proof Suppose, to the contrary, that G 62 S3. Let T 1 and T 2 be two edge-disjoint

spanning triangle-trees of G. Let Ri be a largest removable set of T i for i ¼ 1; 2.
Without loss of generality, assume that

jR1j � jR2j:

Our general strategy is to add the edges of R1 to T 2 to obtain a Z3-connected graph

T 2 þ R1. At the same time, T 1 � R1 is obviously 2-edge-connected by definition.

Then it follows from Lemma 4.1 that G 2 S3, a contradiction. Thus our ultimate

goal below is to show that

T 2 þ R1 2 hZ3i: ð4Þ

For convenience, we may also view Ri ¼ G½Ri� as an edge-induced subgraph of

G. We start with the following claim.

Claim The graph R1 is a tree.

Proof If R1 contains a cycle, then by Lemma 2.4(iii) we have T 2 þ R1 2 hZ3i as
desired in (4). Thus R1 is acyclic. Let L1 be the set of leaves in T 1. Clearly,

L1 \ VðR1Þ ¼ ; since there is no removable edge incident to a leaf. Thus by

Proposition 1, we have jR1j � jVðGÞj � jL1j � 1� jVðR1Þj � 1. As R1 is acyclic, we

conclude that it is a tree. h

Claim Let u;w 2 VðR1Þ. For any v 2 VðPðu;w; T 2ÞÞ \ VðR1Þ, there is a uvw-path
in R1.

Proof By contradiction, assume that v is not in the uw-path Puw of R1. Since R1 is a

tree by Claim 4, there is a unique shortest path from v to Puw in R1, where the

intersection vertex is denoted by c. Then we have three paths Puc, Pvc, Pwc

intersecting at c. Note that it is possible that c ¼ u or c ¼ w. Since

v 2 VðPðu;w; T 2ÞÞ \ VðR1Þ, we can devide Pðu;w; T 2Þ into two triangle-paths

Pðu; v; T 2Þ and Pðv;w; T 2Þ. Note that VðPðu; v; T 2ÞÞ \ VðPðv;w; T 2ÞÞ contains

common vertices (i.e. , u is one of their common vertex). Moreover, we have either

c 62 VðPðu; v; T 2ÞÞ or c 62 VðPðv;w; T 2ÞÞ. Assume, w.l.o.g., that

c 62 VðPðu; v; T 2ÞÞ. We lift the two paths Puc, Pvc to become two new edges

uc, vc. Then, T 2 þ ucþ vc 2 hZ3i by Lemma 2.4 (ii), and so T 2 þ Puc þ Pvc 2
hZ3i by Lemmas 2.2 and 2.3. Hence, T 2 þ R1 2 hZ3i, i.e., (4) holds. h

Claim For any distinct edges e1 ¼ u1v1 2 R1 and e2 ¼ u2v2 2 R1, the triangle-
paths Pðu1; v1; T 2Þ and Pðu2; v2; T 2Þ are edge-disjoint.

Proof Assume it is not the case. Then T 
 ¼ Pðu1; v1; T 2Þ [ Pðu2; v2; T 2Þ is a

triangle-tree, which is a sub-triangle-tree of T 2. Since R1 is a tree by Claim 4, there

is a shortest path connecting a vertex of e1 and a vertex of e2 in R1. By appropriately

relabeling the vertices, we may denote this path by Pu1u2 . If u2 2 VðPðu1; v1; T 2ÞÞ,
then by Claim 4 there is a u1u2v1-path Pu1u2v1 in R1. Thus Pu1u2v1 þ u1v1 is a cycle in
R1, a contradiction to Claim 4. Hence we have u2 62 VðPðu1; v1; T 2ÞÞ, and so u2 is a
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leaf of T 
. Now lift the path Pu1u2 to become a new edge u1u2. Then, T 
 þ u1u2 þ
v2u2 2 hZ3i by Lemma 2.4(i). Thus, T þ u1u2 þ v2u2 2 hZ3i and T þ R1 2 hZ3i by
Lemmas 2.2, 2.3 and Corollary 2.1. Thus, (4) holds. h

Claim We have jR2j ¼ jR1j, and for each uv 2 R1 the graph Pðu; v; T 2Þ þ uv is a
K4.

Proof Recall that we already have jR1j � jR2j by the assumption in the beginning. It

remains to show that jR2j � jR1j. For each edge e ¼ uv 2 R1, Pðu; v; T 2Þ is a

triangle-path with at least 4 vertices, and so it contains at least one distinguished

removable edge, namely the edge in the triangle containing u but not incident to u.
Moreover, all these distinguished removable edges are distinct by Claim 4 (from the

fact that these triangle-paths are mutually edge-disjoint). Let R0
2 be the collection of

all such edges. Then, jR0
2j � jR1j, and so by the maximality of R2 we have

jR2j � jR0
2j � jR1j. Thus, jR2j ¼ jR1j. Furthermore, if Pðu; v; T 2Þ contains at least 5

vertices for some e ¼ uv 2 R1, then we can easily select two removable edges from

it, namely the distinguished removable edge in the triangle containing u but not

incident to u and also a similar edge for v. This would result in jR0
2j[ jR1j, a

contradiction. Hence we conclude that the graph Pðu; v; T 2Þ þ uv is exactly a K4 for

each uv 2 R1.

Claim We have jVðGÞj � 5 and jR2j ¼ jR1j � 2.

Proof When jVðGÞj ¼ 4, it is easy to check that G 2 S3 by Lemma 4.1.

Specifically, there are three non-isomorphic distributions of T 1 and T 2 (see

Fig. 4, we use dashed lines to distinguish T 1 and T 2), and G can be edge-partitioned

into a spanning Z3-connected subgraph and a spanning 2-edge-connected subgraph

in each case (thiner lines for Z3-connected one, broader lines for 2-edge-connected

one). An alternate method for proving the case jVðGÞj ¼ 4 is to apply lifting

techniques of Lemma 2.2 (iii), and the readers can refer to [16] for more details.

Thus we have jVðGÞj � 5.

Now suppose jR2j ¼ jR1j ¼ 1. Then both T 1 and T 2 contain jVðGÞj � 2 leaves

by Proposition 1. In fact, this indicates that both T 1 and T 2 are isomorphic to the

Fig. 4 Decomposition of graphs with exactly 4 vertices and 2 spanning triangle-trees
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complete tripartite graph K1;1;jVðGÞj�2. As jVðGÞj � 5, there are at least jVðGÞj �
4� 1 common leaves for T 1 and T 2. Let x be a common leaf of T 1 and T 2, and let

xyz be the corresponding triangle in T 1. Now consider the graph G0 ¼ G� xþ yz.

Then G0 contains two edge-disjoint spanning triangle-trees T 0
1 ¼ T 1 � x and

T 0
2 ¼ T 2 � x. Moreover, T 0

2 is 2-edge-connected, and T 0
1 þ yz 2 hZ3i since it

contains parallel edges yz and by Corollary 2.1. Thus, G0 ¼ G� xþ yz 2 S3 by

Lemma 4.1. Hence, G 2 S3 by Lemma 2.2 (iv), a contradiction. h

The final step As in the proof of Claim 4, let R0
2 be the collection of all edges f

such that f ¼ Pðu; v; T 2Þ � u� v for some uv 2 R1. Denote R0
2 ¼ ff1; f2; � � � ; fsg,

where jR1j ¼ jR2j ¼ s. Recall that Pðfk; ft; T 2Þ is a shortest triangle-path from fk to
ft in T 2. Choose Pðfk; ft; T 2Þ as small as possible among all possible distinct edges

fk; ft 2 R0
2.

Assume that Pðfk; ft; T 2Þ is a triangle, say uvw, where fk ¼ uw and ft ¼ vw. We

further denote the corresponding K4 associated with fk and ft by ukuvkw and utuvtw
(see Fig. 5(1)). If uv 2 R0

2, then R0
2 contains a cycle uvw, and so T 1 þ R0

2 2 hZ3i by
Lemma 2.4(iii). Thus it follows from Lemma 4.1 that G 2 S3, a contradiction. So,

we have uv 62 R0
2. Now let R00

2 ¼ R0
2 [ fuvg. Then T 2 � R00

2 is 2-edge-connected

since it contains two edge-disjoint paths uukwvtv and uvkwutv connecting u and v.
Hence R00

2 is a removable set with size jR00
2j ¼ jR0

2j þ 1 ¼ sþ 1[ s ¼ jR2j, a

contradiction to the maximality of R2.

Thus Pðfk; ft; T 2Þ contains at least 4 vertices. Imaging that Pðfk; ft; T 2Þ is

embedded as an outer plane graph. Let C be the outer facial cycle of Pðfk; ft; T 2Þ,
where fk; ft 2 EðCÞ. Thus C is particularly a Hamiltonian cycle of Pðfk; ft; T 2Þ. Then
C contains a chord uv (see Fig. 5(2)). By the minimality of Pðfk; ft; T 2Þ, we have

uv 62 R0
2. Otherwise Pðfk; uv; T 2Þ causes a shorter triangle-path. Now let

R00
2 ¼ R0

2 [ fuvg. Then T 2 � R00
2 is 2-edge-connected since u and v are still

contained in a cycle similarly as aforementioned. Thus R00
2 is a removable set, which

has more elements than R2, again a contradiction. This completes the proof. h

5 Remarks on Triangularly-Connected Subgraphs

Recall the group connectivity version of Theorem 1.3 of Fan et al. [5] below.

Fig. 5 The edge uv is removable in the final step in the proof of Theorem 4.1
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Theorem 5.1 Let G be a triangularly-connected graph with jVðGÞj � 3. Then G 6
2 hZ3i if and only if there is a subgraph G1 and an odd wheel or a triangle, called

W, such that G ¼ Wa
2
G1, where G1 62 hZ3i is triangularly-connected.

From this theorem, we can easily characterize triangularly-connected graphs

without spanning triangle-trees under the assumption of Z3-connectivity. An

eccentrical edge of a wheel is an edge that is not incident with the center vertex. A

wheel in a graph G is fully 2-summed if for each eccentrical edge e, there exist

subgraphs A, B of G such that G ¼ Aa
2
B and EðAÞ \ EðBÞ ¼ feg (see Fig. 6

below).

Proposition 2 Let G 62 hZ3i be a triangularly-connected graph. Then G has no
spanning triangle-tree if and only if there is an odd wheel of G that is fully
2-summed.

Proof The ‘‘if’’ part is trivial, since each eccentrical edge of the fully 2-summed

odd wheel must be in the spanning triangle-tree, which leads to a contradiction. It

remains to justify the ‘‘only if’’ part.

Suppose, to the contrary, that T is a maximum triangle-tree of G, where

jVðT Þj\jVðGÞj. Then there exists a pair of incident edges e1,e2 with e1 2 EðT Þ,
e2 62 EðT Þ, where e1 and e2 are intersecting at v 2 VðT Þ. Since G is triangularly-

connected, there is a triangle-path P from e1 to e2. So, there must be a triangle with

2 vertices in VðT Þ, named x, y, and one vertex in VðGÞ � VðT Þ, named z. If
xy 2 EðT Þ, then T þ xzþ yz is a larger triangle-tree, a contradiction. So, we have

xy 62 EðT Þ and there is a triangle xyt on P with t 2 VðTÞ. If there is at most one

edge of xt, yt in EðT Þ, say yt, then by Lemma 2.2(i), T þ xyþ xt 2 hZ3i. Thus,
G 2 hZ3i by Lemma 2.1(iii). So, both xt and yt are in EðT Þ. Since T is a triangle-

tree, there is a triangle-path Q from xt to yt. Moreover, Q is a fan, a wheel with one

eccentrical edge deleted. If there is an eccentrical edge f not in any 2-sum in G�Q,

then T � f þ xyþ xzþ yz is a larger triangle-tree of G, a contradiction. So, G has a

fully 2-summed wheel. The proof is thus complete. h

From Theorem 5.1 and Proposition 2, non-Z3-connected triangularly-connected

graphs almost have the same structure as graphs containing spanning triangle-trees.

Each of them is formed from some well-characterized building blocks (triangles and

odd wheels) by applying some 2-sum operations. Thus all the main results

concerning spanning triangle-trees in this paper can be easily transferred to graphs

Fig. 6 A wheel that is fully
2-summed
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containing spanning triangularly-connected subgraphs, with essentially the same

proof. For example, we have the following more general theorem.

Theorem 5.2 Let G be a graph containing a spanning triangularly-connected
subgraph.

(a) G has no 3-NZF if and only if G ¼ B
U
G1, where G1 contains a spanning

triangularly-connected subgraph and has no 3-NZF. In other words, G has no

3-NZF if and only if G is formed from K4 by a series of bull-growth

operations.

(b) G 62 hZ3i if and only if G can be constructed from K3 or K4 by 2-sum and

bull-growth operations.

The methods developed in this paper may be helpful in studying the following

more general problem.

Problem 1 Let F be the family of all graphs G such that for any u; v 2 VðGÞ there
is uv-triangle-path in G. Characterize all graphs in F that admits a 3-NZF.
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4. Borodin, O.V., Dvořák, Z., Kostochka, A.V., Lidicky, B., Yancey, M.: Planar 4-critical graphs with

four triangles. Eur. J. Comb. 41, 138–151 (2014)

5. Fan, G.-H., Lai, H.-J., Xu, R., Zhang, C.-Q., Zhou, C.-X.: Nowhere-zero 3-flows in triangularly

connected graphs. J. Comb. Theory Ser. B 98, 1325–1336 (2008)

6. Goddyn, L.A., Tarsi, M., Zhang, C.-Q.: On ðk; dÞ-colorings and fractional nowhere-zero flows.

J. Graph Theory 28, 155–161 (1998)

7. Han, M., Li, J., Wu, Y., Zhang, C.-Q.: Counterexamples to Jaeger’s circular flow conjecture.

J. Comb. Theory Ser. B 131, 1–11 (2018)

8. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Comb. Theory Ser. B 26, 205–216
(1979)

9. Jaeger, F.: Nowhere-zero flow problems. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in

Graph Theory, vol. 3, pp. 71–95. Academic Press, London (1988)

10. Jaeger, F., Linial, N., Payan, C.M.: Tarsi: group connectivity of graphs—a nonhomogeneous ana-

logue of nowhere-zero flow properties. J. Comb. Theory Ser. B 56, 165–182 (1992)

11. Kochol, M.: An equivalent version of the 3-flow conjecture. J. Comb. Theory Ser. B 83, 258–261
(2001)

12. Lai, H.-J.: Group connectivity of 3-edge-connected chordal graphs. Graphs Comb. 16(2), 165–176
(2000)

13. Lai, H.-J.: Nowhere-zero 3-flows in locally connected graphs. J. Graph Theory 42, 211–219 (2003)

123

Graphs and Combinatorics (2020) 36:1797–1814 1813



14. Lai, H.-J., Li, X.-W., Shao, Y.-H., Zhan, M.-Q.: Group connectivity and group colorings of graphs—

a survey. Acta. Math. Sin. English Ser. 27(3), 405–434 (2011)

15. Lai, H.-J., Xu, R., Zhou, J.: On group connectivity of graphs. Graphs Comb. 24, 195–203 (2008)

16. Li, J., Li, X., Wang, M.-L.: Complementary graphs with flows less than three. Discrete Math. 343,
111809 (2020)

17. Li, J., Thomassen, C., Wu, Y., Zhang, C.-Q.: The flow index and strongly connected orientations.

Eur. J. Comb. 70, 164–177 (2018)

18. Lovász, L.M., Thomassen, C., Wu, Y., Zhang, C.-Q.: Nowhere-zero 3-flows and modulo k-orien-
tations. J. Comb. Theory Ser. B 103, 587–598 (2013)

19. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math.

Mon. 46(5), 281–283 (1939)

20. Thomassen, C.: The weak 3-flow conjecture and the weak circular flow conjecture. J. Comb. Theory,

Ser. B 102(2), 521–529 (2012)

21. Tutte, W.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

22. Xu, R., Zhang, C.-Q.: Nowhere-zero 3-flows in squares of graphs. Electron. J. Comb. 10, R5 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

1814 Graphs and Combinatorics (2020) 36:1797–1814


	Spanning Triangle-Trees and Flows of Graphs
	Abstract
	Introduction
	Nowhere-Zero 3-Flows
	Circular Flows and Group Connectivity

	Basic Lemmas and Bull-Growth Operation
	Graphs with a Spanning Triangle-Tree
	Two Spanning Triangle-Trees
	Remarks on Triangularly-Connected Subgraphs
	Acknowledgements
	References




