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Abstract

We study the following Steinberg‐type problem on

circular coloring: for an odd integer k 3≥ , what is the

smallest number f k( ) such that every planar graph of

girth k without cycles of length from k + 1 to f k( )

admits a homomorphism to the odd cycle Ck (or

equivalently, is circular ( )k,
k − 1

2
‐colorable). Known

results and counterexamples on Steinberg's Conjecture

indicate that f (3) {6, 7}∈ . In this paper, we show that

f k( ) exists if and only if k is an odd prime. Moreover,

we prove that for any prime p 5≥ ,

p p f p p p−
5

2
+

3

2
( ) 2 + 2 − 5.2 2≤ ≤

We conjecture that f p p p( ) − 22≤ , and observe that
the truth of this conjecture implies Jaeger's conjecture
that every planar graph of girth p2 − 2 has a homo-
morphism to Cp for any prime p 5≥ . Supporting this

conjecture, we prove a related fractional coloring result
that every planar graph of girth k without cycles of

length from k + 1 to








k22

3
is fractional ( )k :

k − 1

2
‐

colorable for any odd integer k 5≥ .
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1 | INTRODUCTION

The circular chromatic number of a graph is a natural generalization of the chromatic number
of a graph, introduced by Vince [28]. For two positive integers k and d with k d2≥ , a
circular k d( , )‐coloring of a graph G is a mapping φ V G k: ( ) {0, 1, …, − 1}→ such that

 d φ u φ v k d( ) − ( ) −≤ ≤ whenever uv E G( )∈ . The circular chromatic number χ G( )c ofG is
defined as the infimum of rational numbers k

d
for whichG has a circular k d( , )‐coloring. Notice

that a circular k( , 1)‐coloring of a graph G is just an ordinary proper k‐coloring of G. We call
χ G( )c a refined measure of coloring because χ G χ G χ G( ) − 1 < ( ) ( )c ≤ for every graph G, as
proved in [4,28], where χ G( ) is the chromatic number ofG. Perhaps one of the most intriguing
problems concerning circular coloring of planar graphs is the following conjecture, motivated
from the dual of Jaeger's circular flow conjecture [19].

Conjecture 1.1. For any planar graph G of girth at least t2 , χ G( ) 2 +c t

2
≤ .

The t = 1 case of this conjecture is the celebrated Four Color Theorem proved by Appel and
Haken [2] in 1976; the t = 2 case is the classical Grötzsch's theorem [15] from 1959 that every
triangle‐free planar graph is 3‐colorable. Conjecture 1.1 remains open for each t 3≥ . A result of
Hell and Zhu [16] shows that Conjecture 1.1 is true for K4‐minor‐free graphs, a subclass of
planar graphs.

When t s= 2 is even, it is not hard to observe that a graph G is circular t t(2 + 2, )‐colorable
if and only if G admits a homomorphism to the odd cycle C s2 +1. Indeed, χ C( ) =c s

s

s2 +1
2 + 1 and

each color class contains exactly one vertex of C s2 +1 under a circular s s(2 + 1, )‐coloring; thus a
circular s s(2 + 1, )‐coloring is also called a C s2 +1‐coloring for convenience. For partial results of
Conjecture 1.1, Dvořák and Postle [13] showed that every planar graph of girth at least 10 is
C5‐colorable. In [11], by duality from flow results, a simpler proof of Dvořák and Postle's result was
obtained, and it was extended to the next case that every planar graph of girth at least 16 is C7‐
colorable. Independently, Postle and Smith‐Roberge [23] also proved that every planar graph of girth
at least 16 isC7‐colorable through the density ofC7‐critical graphs. The current best general result was
due to Lovász, Thomassen, Wu, and Zhang [21], from the dual of their more general flow results, that
for each even t , χ G( )c

t

t

2 + 2
≤ for every planar graph G of girth at least t3 . For odd t , a recent flow

results in [20] also showed that χ G( )c
t

t

2 + 2
≤ for every planar graph G of girth at least t3 + 1.

Another influential coloring problem on planar graphs is Steinberg's Conjecture (see [26])
from 1976, which asserts that every planar graph without cycles of length 4 or 5 is C3‐colorable.
We ask the following generalization on Ck‐coloring.

Question 1.2. For any integer k 3≥ , what is the smallest number f k( ) such that every
planar graph of girth k without cycles of length from k + 1 to f k( ) is Ck‐colorable?

As an approach to Steinberg's Conjecture, Erdős (see [26]) asked to bound and determine f (3).
Abbott and Zhou [1] first established that f (3) 11≤ . The bounds are progressively improved to
f (3) 9≤ by Borodin [5] and by Sanders and Zhao [24] independently, and to f (3) 7≤ by Borodin,
Glebov, Raspaud, and Salavatipour [6], that is, every planar graph without cycles of length from 4 to 7
is 3‐colorable. However, Steinberg's Conjecture has been disproved by Cohen‐Addad, Hebdige, Král’,
Li, and Salgado [10], that is, there exists a planar graph without cycles of length 4 or 5 that is not
3‐colorable. Those results imply that f (3) {6, 7}∈ .

Our first main result of this paper describes the existence of f k( ) for all k.
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Theorem 1.3. The value f k( ) exists as a finite number if and only if k is an odd prime.
Moreover, for any prime p 5≥ ,

p
p

f p p p−
5 − 3

2
( ) 2 + 2 − 5.2 2≤ ≤

We suspect that the lower bound in Theorem 1.3 is close to the exact value of f p( ), and
propose the following conjecture for upper bound.

Conjecture 1.4. For any prime p 5≥ , f p p p( ) ( − 2)≤ . That is, every planar graph of
girth p without cycles of length from p + 1 to p p( − 2) is Cp‐colorable.

The following connection between Conjectures 1.1 and 1.4 is observed.

Proposition 1.5. Let p 5≥ be a prime. The truth of Conjecture 1.4 implies the validity of
Conjecture 1.1 for t p= − 1. That is, Conjecture 1.4 implies that every planar graph of girth
at least p2 − 2 is Cp‐colorable.

Proposition 1.5 indicates that proving Conjecture 1.4 may be difficult. But on the other
hand, it also suggests that Conjecture 1.4 may provide a possible new approach to solve
Conjecture 1.1 for t p= − 1 with odd prime p. Particularly, the p = 5 case of Conjecture 1.4
not only implies that every planar graph of girth 8 is C5‐colorable, but also implies the Five
Coloring Theorem as shown in Observation 2.6.

The fractional chromatic number of a graph is another well‐known variation of the chro-
matic number. For positive integers a and b with a b≥ , a fractional a b( : )‐coloring φ of a graph
G is a set coloring such that each vertex assigns a b‐element subset of a{1, …, } satisfying
φ u φ v( ) ( ) =∩ ∅ whenever uv E G( )∈ . The fractional chromatic number of G, denoted by
χ G( )f , is the infimum of the fractions a

b
such that G admits a fractional a b( : )‐coloring. Notice

that a fractional a( : 1)‐coloring of a graphG coincides with an ordinary proper a‐coloring ofG.
The fractional coloring was first introduced by Hilton, Rado, and Scott [17] in 1973 to seek for a
proof of the Four Color Problem. Since then, it has been the focus of many intensive research
efforts, see [25]. For a graph G, let ω G( ) and α G( ) denote the clique number and the in-
dependence number of G, respectively. It is well known (cf. [29,30]) that




  


 ω G
V G

α G
χ G χ G χ G χ Gmax ( ),

( )

( )
( ) ( ) ( ) = ( ).f c c≤ ≤ ≤

One may also consider the fractional coloring variations of Conjecture 1.1 and Question 1.2.
Analogous to Conjecture 1.1, Naserasr [22] conjectured that every planar graph of girth at least
s2 + 2 is fractional s s(2 + 1 : )‐colorable. It is proved for K4‐minor‐free graphs in [3,14] that
every K4‐minor‐free graph of girth at least s2 is fractional s s(2 + 1 : )‐colorable.

Our second main result provides a fractional coloring result of Question 1.2, which particularly
confirms the fractional coloring version of Conjecture 1.4 for prime p 11≥ in a strong sense.

Theorem 1.6. For any odd integer k 5≥ , every planar graph of girth k without cycles of

length from k + 1 to








k22

3
is fractional ( )k :

k − 1

2
‐colorable.
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In a follow‐up work [18], we also prove the remaining cases (p = 5, 7) of the fractional
coloring version of Conjecture 1.4 with some refined arguments and additional efforts.

The rest of this paper is organized as follows. We introduce some preliminaries and prove
Proposition 1.5 in Section 2. The proof of Theorem 1.3 is presented in Section 3 and the proof of
Theorem 1.6 is completed in Section 4. We end this paper with a few remarks in Section 5.

2 | PRELIMINARIES

We start with some basic notation and terminologies. Let G V G E G= ( ( ), ( )) be a simple finite
graph. For a vertex v V G( )∈ , the neighborhood N v( )G of a vertex v is the set of vertices adjacent to
v, and denotes  d v N v( ) = ( )G G . The distance between two vertices u and v, denoted by d u v( , )G , is
the length of a shortest path fromu to v inG. The subscriptG is often omitted if the graphG is clear
from the context. For S V G( )⊆ , G S− denotes the graph obtained from G by deleting all the
vertices of S together with all the edges incident to at least one vertex in S. For a positive integer i,
let i i[ ] = {1, 2, …, }. We use i+ to denote a number equal or greater than i. An i‐vertex (i+‐vertex,
resp.) is a vertex of degree i (at least i, resp.). Similarly, in a plane graph, an i‐face (i+‐face, resp.) is a
face of degree i (or at least i, resp.). In the rest of this paper, we usually assume k 5≥ is an odd
integer and p 5≥ is a prime implicitly.

A common method in graph coloring is to study certain coloring properties of typical graphs
under given precoloring. This usually provides some reducible subgraphs and facilitates a
discharging proof. We shall define precoloring properties for circular coloring and fractional
coloring, respectively. Let H be a graph with a vertex subset S V H( )⊂ . A precoloring ω assigns
colors in k[ ] to vertices in S such that H S[ ] is properly Ck‐colored. The graph H is called ω S( , )‐
colorable if the precoloring ω of S can be extended to V H( ) to obtain a Ck‐coloring of H .

Similarly, a precoloring φ of S assigns colors in






k[ ]

k − 1

2

to vertices in S such that H S[ ] is properly

fractional ( )k :
k − 1

2
‐colored. We say that H is φS‐colorable if the precoloring φ of S can be

extended to all vertices of H to obtain a fractional ( )k :
k − 1

2
‐coloring.

We first observe the following fact on precoloring of k‐cycle forCk‐coloring, which will be useful.

Lemma 2.1. Let G v v v v= … k0 1 −1 0 be an odd cycle of length k. Let ω be a precoloring of
v v V G{ , } ( )i j ⊆ . Then G is ω v v( , { , })i j ‐colorable if and only if

ω v ω v
k

i j
k

i j k( ) − ( )
− 1

2
( − ) or

+ 1

2
( − ) (mod ).i j ≡ ⋅ ⋅ (1)

Proof. If ω can be extended to a Ck‐coloring ω̃ of G, then the Ck‐coloring
ω V G k˜ : ( ) {0, 1, …, − 1}↦ provides a coloring of G such that

ω v
k

t ω v k t keither ~ ( )
− 1

2
+ ~ ( ) (mod ) for each 0 − 1,t 0≡ ⋅ ≤ ≤

ω v
k

t ω v k t kor ~ ( )
+ 1

2
+ ~ ( ) (mod ) for each 0 − 1.t 0≡ ⋅ ≤ ≤
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Hence, for v v V G, ( )i j ∈ we have Equation (1).
Conversely, if Equation (1) holds, then we can properly define a Ck‐coloring of G as

above. This proves the lemma. □

In a graph G, a d‐Ck‐replacement operation on a given edge e xy E G= ( )∈ is to replace the
edge e with a k‐cycle C v v v v= …k k0 1 −1 0 by identifying x with v0 and identifying y with vd.
When d is not explicitly stated, we just call it aCk‐replacement operation on the edge e E G( )∈ .
Lemma 2.1 implies the following relation betweenCk‐coloring and d‐Ck‐replacement operation.

Proposition 2.2. Let G be a graph, and let G d k( , ) be a graph obtained from G by
applying d‐Ck‐replacement operation on each edge of G. Assume that d and k are coprime,
that is, gcd d k( , ) = 1. Then G is Ck‐colorable if and only if G d k( , ) is Ck‐colorable.

Proof. Let φ be aCk‐coloring ofG. Define a precoloring ω ofG d k( , ) by coloring each vertex

u V G V G d k( ) ( ( , ))∈ ⊂ with ω u dφ u k( ) ( ) (mod )≡ . Since { }φ u φ v( ) − ( ) ,
k k− 1

2

+ 1

2
∈

for each edge uv E G( )∈ , we have, in the graph G d k( , ),

ω u ω v dφ u dφ v
k

d
k

d k( ) − ( ) ( ) − ( )
− 1

2
or

+ 1

2
(mod ).≡ ≡ ⋅ ⋅

It follows from Lemma 2.1 that ω can be extended to a Ck‐coloring of G d k( , ) by
coloring each k‐cycle of G d k( , ) properly.

Conversely, assume that G d k( , ) admits a Ck‐coloring ω. Then for each edge

uv E G( )∈ , we have { }ω u ω v d d k( ) − ( ) , (mod )
k k− 1

2

+ 1

2
∈ ⋅ ⋅ by Lemma 2.1.

Define φ d ω k= (mod )−1 . (Note that d−1 exists in k since gcd d k( , ) = 1.) Then

{ }φ u φ v( ) − ( ) ,
k k− 1

2

+ 1

2
∈ for each edge uv E G( )∈ . That is, φ restricted to V G( )

provides a proper Ck‐coloring of G. □

Applying Lemma 2.1, we also show that f k( ) does not exist for nonprime k by construction
using d‐Ck‐replacement operations.

Proposition 2.3. Let k > 0 be an odd nonprime integer. Then f k( ) does not exist. That
is, for any integer m k> there exist planar graphs of girth k without cycles of length from
k + 1 to m admitting no Ck‐coloring.

Proof. Denote k st= , where s t, are positive integers with t s > 1≥ . Take an m( + 1)‐
cycle z z z z z… m0 1 2 0. For each i m0 − 1≤ ≤ , apply s‐Ck‐replacement operation on the
edge z zi i+1. Let G be the resulting graph. Then G is a planar graph of girth k without
cycles of length from k + 1 to ms. See Figure 1A for the construction of G when k = 9

and m = 13.
It is routine to check thatG is notCk‐colorable. To see this, suppose for a contradiction

that ω V G k: ( ) {0, 1, …, − 1}↦ is a Ck‐coloring of G. By Lemma 2.1, for each
i m0 − 1≤ ≤ , we have
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ω z ω z
k

s
k

s k( ) − ( )
− 1

2
or

+ 1

2
(mod ).i i+1 ≡ ⋅ ⋅

Thus ω z ω z( ) − ( )i i+1 is a multiple of s since k st= . This implies that

ω z ω z ω z ω z s( ) − ( ) = ( ( ) − ( )) is a multiple of .m

i

m

i i0

=0

−1

+1

On the other hand, as z zm 0 is an edge in E G( ), we must have

  { }ω z ω z( ) − ( ) ,m
k k

0
− 1

2

+ 1

2
∈ . But as k st= , neither k − 1

2
nor k + 1

2
is a multiple of s, a

contradiction. This completes the proof. □

In contrast, we will show below in Theorem 3.4 that f p( ) exists as a quadratic function of p
for odd prime p. Now we give a low bound of f p( ) with similar arguments as Proposition 2.3.

Proposition 2.4. For any prime p 5≥ , there exist planar graphs of girth p without cycles
of length from p + 1 to p −

p2 5 − 1

2
admitting no Cp‐coloring. That is, f p p p( ) − +2 5

2

3

2
≥ .

Proof. Construct a graph Wp from a p(2 − 3)‐cycle z z z z… p0 1 2 −4 0 by adding a new
center vertex x connecting each zi with a new path of length p − 2 for i p0 2 − 4≤ ≤ .
This graphWp was constructed by DeVos (see [8]) to show the tightness of Conjecture 1.1,
that is, Wp is a planar graph of girth p2 − 3 without Cp‐coloring. To see that Wp is not
Cp‐colorable, we prove by contradiction. Suppose to the contrary that ω is aCp‐coloring of
Wp. If ω x ω z( ) = ( )i for some i, then after identifying x and zi in the path of length p − 2

between x and zi, we obtain a Cp‐coloring of p( − 2)‐cycle, a contradiction. So
ω x ω z( ) ( )i≠ for each i p0 2 − 4≤ ≤ . Hence the p(2 − 3)‐cycle z z z z… p0 1 2 −4 0 admits a

(A) (B)

FIGURE 1 Constructions in Propositions 2.3 and 2.4. (A) Construction of G for k = 9 and m = 13, and (B)
construction of Hp for p = 5
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Cp‐coloring with colors p ω x{0, 1, …, − 1} { ( )}⧹ . This provides a homomorphism from the
p(2 − 3)‐cycle to a path of length p − 2; in particular, it indicates that the p(2 − 3)‐cycle

is 2‐colorable, a contradiction.
Construct a graph Hp fromWp by applying ( )p − 1

2
‐Cp‐replacement operation on each

edge of Wp. See Figure 1B for the construction of H5. Since Wp is not Cp‐colorable, we
obtain that Hp is notCp‐colorable by Proposition 2.2. AsWp has girth p2 − 3, Hp is of girth

p and without cycles of length from p + 1 to p(2 − 3) − 1
p − 1

2
. □

Next, we shall prove Proposition 1.5 using analogous approaches.

Proposition 2.5 (Restatement of Proposition 1.5). Let p 5≥ be a prime. If f p p( ) ≤

p( − 2), then every planar graph of girth at least p2 − 2 is Cp‐colorable.

Proof. Assume that f p p p( ) ( − 2)≤ . That is, every planar graph of girth p without
cycles of length from p + 1 to p p( − 2) isCp‐colorable. LetG be a planar graph of girth at

least p2 − 2. Apply the ( )p − 1

2
‐Cp‐replacement operation on each edge of G to obtain a

graph ( )G p,
p − 1

2
. Then ( )G p,

p − 1

2
is a planar graph of girth p without cycles of length

from p + 1 to p p( − 2). Since f p p p( ) ( − 2)≤ , we know that ( )G p,
p − 1

2
is

Cp‐colorable. Hence G is Cp‐colorable as well by Proposition 2.2. □

Similar arguments also show that the p = 5 case of Conjecture 1.4 is stronger than the Five
Color Theorem.

Observation 2.6. The truth of f (5) 17≤ implies that every planar graph is 5‐colorable.

Proof. Assume that f (5) 17≤ , that is, every planar graph of girth 5 without cycles of
length from 6 to 17 is C5‐colorable. LetG be a planar graph, and H be the graph obtained
from G by replacing each edge with a path of length 3. Let F be the graph obtained from
H by applying 2‐C5‐replacement operation on each edge of H . Then by construction F is
a planar graph of girth 5 without cycles of length from 6 to 17, and hence F is
C5‐colorable by f (5) 17≤ . Now, by Proposition 2.2 and Lemma 2.1, the C5‐coloring ω of
F induces a proper 5‐coloring of G, since ω u ω v( ) ( )≠ whenever uv E G( )∈ . □

At the end of this section, we define some graphs, serving for reducible configurations in
later proofs.

Definition 2.7. Let G be a graph.

(i) A thread inG is a path whose internal vertices are 2‐vertices inG. The end vertices of
the path are called the end vertices of the thread. A thread with end vertices x y, is
also called an x y( , )‐thread, denoted by T x y( , ). An s‐thread is a thread with
s internal vertices. A k k k( , , …, )t1 2 ‐thread Tx in G is a subgraph consisting of distinct
k1‐thread, k2‐thread, … , kt‐thread which share a common end vertex x , where t 3≥ .
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The common end vertex x is called a k k k( , , …, )t1 2 ‐vertex. Let yi be the other end
vertex of the ki‐thread, and define y y y{ , , …, }t1 2 to be the end vertices of Tx. If z is a
2‐vertex of an x y( , )‐thread, then we say x and z are weakly adjacent.

(ii) An s‐necklace in G is a subgraph obtained from an s‐thread by applying Ck‐
replacement operations on some edges. A vertex z is an end vertex of the s‐necklace
if and only if z is an end vertex of the s‐thread. A necklace with end vertices x y, is
also called an x y( , )‐necklace, denoted by N x y( , ). A k k k( , , …, )t1 2 ‐necklaceNx is a
subgraph obtained from a k k k( , , …, )t1 2 ‐thread Tx by applying Ck‐replacement op-
erations on some edges. The vertex x is called the center vertex of Nx. A vertex z is an
end vertex of the k k k( , , …, )t1 2 ‐necklace if and only if z is an end vertex of the
k k k( , , …, )t1 2 ‐thread. A k k k( , ; )1 2 3 ‐bull‐necklace is a subgraph obtained from a
k k k( , , )1 2 3 ‐thread by applying Ck‐replacement operations on some edges of the k3‐
thread. A k k k( , , …, )t1 2 ‐crown‐necklace is obtained from a k k k( , , …, )t1 2 ‐necklace by
replacing the center vertex with a k‐cycle. A vertex z is an end vertex of the
k k k( , , …, )t1 2 ‐crown‐necklace if and only if z is an end vertex of the k k k( , , …, )t1 2 ‐
necklace. See Figure 2 for some examples.

3 | THE Cp‐COLORING FOR PRIME p

This section is aiming to show f p p p( ) 2 + 2 − 52≤ in Theorem 1.3. We first present some
reducible configurations under precoloring in Section 3.1, and then complete the proof in
Section 3.2 by a discharging method. Unlike some standard discharging arguments, our method
mainly analyzes certain modified graphs obtained from the original graph, which benefits in
handling some structures involving p‐cycles.

(A) (B)

(C) (D) (E)

FIGURE 2 Examples for Definition 2.7
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3.1 | Precoloring and reducible subgraphs for Cp‐coloring

Let H be a thread, or a necklace, or a k k k( , , …, )t1 2 ‐thread, or a k k k( , , …, )t1 2 ‐necklace, or a
k k k( , , …, )t1 2 ‐crown‐necklace with W being the end vertex set of H . The graph H is called
reducible if in any graphG containing H as a subgraph, any Cp‐coloring ofG V H W− ( ( ) )⧹ can
be extended to a Cp‐coloring of G. In other words, it is equivalent to say that H is ω W( , )‐
colorable for any precoloring ω ofW . It is known from [8,23,29] that some threads and certain
k k k( , , …, )t1 2 ‐threads are reducible configurations for Ck‐coloring. Our main reducible config-
urations in this section are certain necklaces and crowns, generalizing from threads, for prime
p.

We need the following well‐known Cauchy–Davenport Theorem over prime field. For two
sets A B, , define A B a b a A b B+ = { + : , }∈ ∈ .

Theorem 3.1 (Cauchy–Davenport Theorem, [9,12]). Let p be a prime. If A and B are two
nonempty subsets of p, then we have

     A B p A B+ min{ , + − 1}.≥

Lemma 3.2. Let N x x( , )s0 +1 be an s‐necklace, where for each i s0 ≤ ≤ , there is either an
edge x xi i+1 or a p‐cycle between xi and xi+1 consisting of a ki‐thread and a p k( − 2 − )i ‐
thread. Let ω be a precoloring of x0, and let B x( )i be the set of available colors of xi from a
coloring of xi−1 for each i s[ + 1]∈ , where B x ω x( ) = { ( )}0 0 . Then each of the following
holds.

(i) We have  B x i p( ) min{ + 1, }i ≥ for each i s[ + 1]∈ .
(ii) If s p − 2≥ , then an s‐necklace is reducible for Cp‐coloring.

Proof. (i) For any s i 0≥ ≥ , we shall count the number of colors ω x( )i+1 that can be
extended from a color ω x( )i of xi. Note that x0 receives a fixed coloring ω x( )0 . If x x0 1 is an

edge in G, then we have { }ω x ω x ω x( ) ( ) + , ( ) −
p p

1 0
− 1

2 0
− 1

2
∈ , that is,

{ }B x ω x ω x( ) = ( ) + , ( ) −
p p

1 0
− 1

2 0
− 1

2
. The arithmetic operations here and below are

taken modulo p. If there is a p‐cycle between x0 and x1 which consists of a k0‐thread

and a p k( − 2 − )0 ‐thread, then by Lemma 2.1 we have {ω x ω x( ) ( )+1 0∈

}k ω x k( + 1), ( ) − ( + 1)
p p− 1

2 0 0
− 1

2 0 , which gives {B x ω x k( ) = ( ) + ( + 1),
p

1 0
− 1

2 0 ω x( )0

}k− ( + 1)
p − 1

2 0 . Hence, in any case, we have  B x( ) = 21 .

Below we shall apply induction to show  B x i p( ) min{ + 1, }i ≥ for each i s[ + 1]∈ .
The basic case i = 1 is proved above. Assume the statement  B x i p( ) min{ + 1, }i ≥ holds
for any integer at most i. For the case i + 1, we shall show that  B x i p( ) min{ + 2, }i+1 ≥ .
Similar as before, if x xi i+1 is an edge of G, then

{ }B x b
p

b
p

b B x( ) = +
− 1

2
, −

− 1

2
: ( ) ;i i+1 ∈
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if there is a p‐cycle between xi and xi+1 consisting of a ki‐thread and a p k( − 2 − )i ‐
thread, then by Lemma 2.1 we have

{ }B x b
p

k b
p

k b B x( ) = +
− 1

2
( + 1), −

− 1

2
( + 1) : ( ) .i i i i+1 ∈

Using the notation in Theorem 3.1, we have

{ }
{ }

B x B x
p p

B x

B x
p

k
p

k

either ( ) = ( ) +
− 1

2
, −

− 1

2
or ( )

= ( ) +
− 1

2
( + 1), −

− 1

2
( + 1) .

i i i

i i i

+1 +1

By Theorem 3.1, we obtain that    B x B x p i p( ) min{ ( ) + 1, } min{ + 2, }i i+1 ≥ ≥ . This
proves the claim that  B x i p( ) min{ + 1, }i ≥ for each i s[ + 1]∈ .

(ii) Fix a Cp‐coloring ω of G V N x x x x− ( ( ( , )) { , })s s0 +1 0 +1⧹ . We show that ω can be
extended to a Cp‐coloring ofG. We still let B x( )i be the set of available colors of xi from a

coloring of xi−1 for each i s1 ≤ ≤ , where B x ω x( ) = { ( )}0 0 . By (i), we particularly have
that  B x p( ) − 1j ≥ for each p j s− 2 ≤ ≤ . For the s‐necklace N x x( , )s0 +1 , ω x( )s+1 is a

fixed color, and so its restriction requires that { }ω x ω x ω x( ) ( ) + , ( ) −s s
p

s
p

+1
− 1

2 +1
− 1

2
∈

when x xs s+1 is an edge, and { }ω x ω x k ω x k( ) ( ) + ( + 1), ( ) − ( + 1)s s
p

s s
p

s+1
− 1

2 +1
− 1

2
∈

when there is a p‐cycle between xs and xs+1 consisting of ks‐thread and a p k( − 2 − )s ‐

thread. Since  B x p( ) − 1s ≥ , we have both B x( )s ∩{ }ω x ω x( ) + , ( ) −s
p

s
p

+1
− 1

2 +1
− 1

2
≠ ∅

and { }B x ω x k ω x k( ) ( ) + ( + 1), ( ) − ( + 1)s s
p

s s
p

s+1
− 1

2 +1
− 1

2
∩ ≠ ∅. Therefore, there

exists an available color for the choice of xs in B x( )s , and so ω can be extended to a
Cp‐coloring of G by appropriately coloring each of x x x, , …, s1 2 and by Lemma 2.1. □

Lemma 3.3. For a k k k( , , …, )t1 2 ‐necklace or a k k k( , , …, )t1 2 ‐crown‐necklace, if it holds that

k p k p t pmax { } − 2 and ( − 2) − + 1,
i t

i

i

t

i
1 =1

≤ ≥
≤ ≤

then it is reducible for Cp‐coloring.

Proof. Let H be a k k k( , , …, )t1 2 ‐necklace or a k k k( , , …, )t1 2 ‐crown‐necklace with end
vertex setW . For each i t[ ]∈ , let x y,i i be the end vertices of the ki‐necklace in H , where
x Wi ∈ . If H is a k k k( , , …, )t1 2 ‐necklace, then y y y= = = t1 2 ⋯ is a common vertex. If
H is a k k k( , , …, )t1 2 ‐crown‐necklace, then y y y, , …, t1 2 (may or may not be identical) are
lying in a common p‐cycle. In the later case, suppose that we color a selected vertex y0 of
the common p‐cycle with color b. Then denote the color of yi by φ y b d( ) = +i

p
i

− 1

2
,

where di is the distance from y0 to yi in the cyclic order for each i t1 ≤ ≤ . In the former
case, we apply the same notation and set that y y y y= = = = t0 1 2 ⋯ , ω y b( ) =i , and
d = 0i for each i.

HU AND LI | 321



Fix a precoloring ω ofW . We show that ω can be extended to a Cp‐coloring of H by
selecting an appropriate value of b with application of Lemma 3.2(i).

For each i t1 ≤ ≤ , let Bi be the set of available colors of yi such that the coloring ω x( )i
and ω y B( )i i∈ can be extended to a Cp‐coloring of the ki‐necklace. By Lemma 3.2(i), we

have  B k + 2i i≥ . Let { }D β β α d α B= : = − ,i
p

i i
− 1

2
∈ . Clearly,    D B k= + 2i i i≥ .

Thus we have





   D D t D

k t p

k p t p

− ( − 1)

( + 2) − ( − 1)

= − ( − 2) + 1.

i

t

i

i

t

i
i

t

i

i

t

i

i

t

i

=1 =1 =1

=1

=1

≥

≥

≥

Hence  Di
t

i=1 ≠ ∅ holds. Then we can select an element b Di
t

i=1∈ and color yi with
ω y φ y b d( ) = ( ) = +i i

p
i

− 1

2
for each i t[ ]∈ . By definition, the coloring ω x( )i and ω y( )i

can be extended to a Cp‐coloring of the ki‐necklace for each i t[ ]∈ . Therefore, H is
reducible for Cp‐coloring. □

3.2 | The proof of Theorem 1.3

By Proposition 2.3, f k( ) does not exist if k > 0 is not an odd prime integer. Proposition 2.4
indicates p p f p− + ( )2 5

2

3

2
≤ for a prime p 5≥ . To complete the proof of Theorem 1.3, it

suffices to show that every planar graph of girth p without cycles of length from p + 1 to
p p2( − 1)( + 2) − 1 is Cp‐colorable. In fact, we show the following mild stronger theorem.

Theorem 3.4. Let G be a plane graph of girth p without cycles of length from p + 1 to
p p2( − 1)( + 2) − 1, and let ω be a precoloring of a p‐cycle C of G. Then G is ω V C( , ( ))‐

colorable.

Proof. Suppose to the contrary that G is a counterexample with  E G E C( ) ( )⧹

minimized. Clearly, we have E G E C( ) ( )⧹ ≠ ∅ and  V G p( ) > . □

Claim 1.

(i) G is 2‐connected. In particular, δ G( ) 2≥ .
(ii) Every p‐cycle in G bounds a face. In particular, C is a facial p‐cycle of G.

Proof of Claim 1.

(i) IfG is not 2‐connected, then there exist proper induced subgraphsG1 andG2 ofG and
a vertex v V G( )2∈ such that E G E G E G( ) = ( ) ( )1 2∪ , V G V G v( ) ( ) { }1 2∩ ⊆ , and
V C V G( ) ( )1⊆ . By the minimality of the counterexample, ω can be extended to a
Cp‐coloring ω̃ ofG1. Take an edge uv E G( )2∈ . If uv is in a p‐cycle, then we let C′ be a
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p‐cycle containing uv and let G G′ =2 2. Otherwise, we construct a new graph G′2 from
G2 by adding a new p( − 2)‐thread between u and v to form a new p‐cycle C′. Note
that G′2 contains no cycles of length from p + 1 to p p2( − 1)( + 2) − 1 in any
case. Let ω′ be a precoloring of C′ such that ω v ω v′( ) = ˜( ) (if v V G( )1∉ , then
G is not connected and we take ω v′( ) to be an arbitrary color). Since
   ( )E G E C E G E C′ ( ′) < ( ) ( )2 ⧹ ⧹ and by the minimality of the counterexample, ω′ can
be extended to a Cp‐coloring ω̃′ ofG′2. So ω̃′ and ω̃ combine to provide a Cp‐coloring of
G, which is a contradiction.

(ii) Suppose for a contradiction that a p‐cycle K ofG does not bound a face. LetG1 be the
subgraph of G drawn outside (and including) K , and let G2 be the subgraph of
G drawn inside (and including) K . We may, without loss of generality, assume that
V C V G( ) ( )1⊂ . By the minimality of the counterexample, ω can be extended to a
Cp‐coloring ω̃ ofG1. Let ω′ be the restriction of ω̃ onV K( ). Then ω′ can be extended to
a Cp‐coloring ω̃′ of G2 by the minimality of G. The union of ω̃ and ω̃′ is a Cp‐coloring
of G extending ω, which is a contradiction.

By Claim 1(ii), C must be a facial cycle of G. Re‐embedding G on the plane if needed,
we can assume that the face bounded by C is the outer face ofG, denoted by f0. Let H be
a thread, or a necklace, or a k k k( , , …, )t1 2 ‐thread, or a k k k( , , …, )t1 2 ‐necklace, or a
k k k( , , …, )t1 2 ‐crown‐necklace of G with end vertex set W . If V H W V G V C( ) ( ) ( )⧹ ⊆ ⧹ ,
then we say H is valid in G. □

Claim 2. Each of the following holds.

(i) G contains no valid p( − 2)+‐thread.
(ii) G contains no valid p( − 2)+‐necklace.
(iii) G contains neither a valid k k k( , , …, )t1 2 ‐necklace nor a valid k k k( , , …, )t1 2 ‐crown‐

necklace with  k p t p( − 2) − + 1i
t

i=1 ≥ , where t 3≥ .

Proof of Claim 2. Note that an s‐thread is a special s‐necklace without performing
Cp‐replacement operation, and so Claim 2(i) follows from Claim 2(ii). Suppose, for a
contradiction, that G has a valid p( − 2)+‐necklace, or a valid k k k( , , …, )t1 2 ‐necklace, or a
valid k k k( , , …, )t1 2 ‐crown‐necklace described above, denoted by H withW being its end
vertex set. By the minimality of G, ω can be extended to a Cp‐coloring ω̃ of
G V H W− ( ( ) )⧹ . By Lemmas 3.2(ii) and 3.3, ω̃ can be extended to a Cp‐coloring of
G, that is, ω can be extended to a Cp‐coloring of G, a contradiction.

By Claim 1(ii), any p‐cycle in G is a facial p‐cycle (the boundary of a p‐face). Since
G contains no cycles of length from p + 1 to p p2( − 1)( + 2) − 1, any two p‐cycles have
no common edges. A vertex v of a facial p‐cycle K with d v( ) 3G ≥ is called an attachment‐
vertex of K . Since G is 2‐connected by Claim 1(i), every p‐cycle contains at least two
attachment‐vertices.

Next, we construct two graphsG′ andG″ modified fromG for later proof. LetG′ be the
graph obtained fromG by replacing K with an edge uv for any facial p‐cycle K other than
C with exactly two attachment‐vertices u v, . Note that d u v( , ) 2G ≥ by Claim 2(i). By
construction, each edge of G′ is corresponding to either an edge of G or a p‐cycle
consisting of a t‐thread and a p t( − 2 − )‐thread with p t− 2 2≥ ≥ . Note that the
shorter one of t‐thread and p t( − 2 − )‐thread has length at most p − 1

2
.
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Let K be a facial p‐cycle ofG′ other thanC with attachment‐vertices v v v, , …, r1 2 . Then
r 3≥ by the construction of G′. To stick K , we mean to delete all the vertices of
V K v v v( ) { , , …, }r1 2⧹ and add a new vertex v*K inside face K to join each vertex of
v v v{ , , …, }r1 2 . The vertex v*K is called a sticking vertex, where the degree of v*K is at least 3.
Let G″ be the graph obtained from G′ by sticking all the facial p‐cycles of G′ except C.

By the construction of G″, we immediately observe the following: G″ is a plane graph
with outer face f0 bounded by C; the minimal degree δ G( ) 2″ ≥ ; for any uv E G( )″∈ , at
most one vertex of u v{ , } is in V G V G( ) ( )″ ⧹ ; each 2‐vertex v of G″ is either a 2‐vertex of G
or an attachment‐vertex of a facial p‐cycle of G; each vertex v V G V G( ) ( )″∈ ⧹ is a
sticking vertex with d v( ) 3G″ ≥ . These facts will be used implicitly in the rest of the proof.

We further obtain the claim below concerning cycles of G″. □

Claim 3. The new constructed graph G″ is a plane graph of girth p without cycles of
length from p + 1 to p4( + 2) − 1. Furthermore, C is the only one p‐cycle of G″.

Proof of Claim 3. Recall that each p‐cycle in G is a facial p‐cycle by Claim 1(ii). By the

construction of G″, C is the only one p‐cycle of G″. Let Q x x x x= … m0 1 0 be a cycle of G″

other than C. If xi is a sticking vertex, then xi corresponds to a facial p‐cycle Ki ofG, and
xi−1 and xi+1 are two attachment‐vertices of Ki, thus the two edges x x x x,i i i i−1 +1 together
correspond to a segment of Ki whose length is at most p − 2 as Ki has at least three
attachment‐vertices. If both xj and xj+1 are not sticking vertices, then x xj j+1 corresponds

to either an edge of G or a p‐cycle of G consisting of two threads, where the shorter one

has length at most p − 1

2
. It is also clear that any two sticking vertices are not adjacent.

Hence, for each sticking vertex in the cycle Q its two incident edges together correspond
to a path of length at most p − 2 in G, and for each edge in Q not incident to sticking

vertex it corresponds to a thread of length at most p − 1

2
. Hence the cycleQ corresponds to

a cycle of length at most m
p − 1

2
in G. So we have m p p2( − 1)( + 2)

p − 1

2
≥ , which gives

m p4( + 2)≥ . Therefore, each cycle of G″ except C has length at least p4( + 2).
In the graph G″, a thread or a k k k( , , …, )t1 2 ‐thread H with end vertex setW is called

valid if V H W V G V C( ) ( ) ( )″⧹ ⊆ ⧹ . □

Claim 4. Each valid s( + 2)‐thread of G″ corresponds to a valid s‐necklace of G. In
particular, G″ contains no valid p+‐thread by Claim 2(ii).

Proof of Claim 4. Let P x x x x= … s s0 1 +2 +3 be a valid s( + 2)‐thread of G″. For any
i s[ + 2]∈ , x V G V C( ) ( )i

″∈ ⧹ by definition. Noting that xi is a 2‐vertex and by the
construction of G″, we have x V G( )i ∈ . Hence for each i s[ + 1]∈ , the edge x xi i+1 in G″

corresponds to either an edge of G V C− ( ) or a p‐cycle of G V C− ( ) consisting of two
threads by its construction. Therefore, x x x… s1 2 +2 corresponds to a valid s‐necklace ofG.
In particular, a valid p+‐thread of G″ corresponds to a valid p( − 2)+‐necklace of G, and
thus G″ contains no valid p+‐thread by Claim 2(ii). □

Claim 5. G″ contains no valid k k k( , , …, )t1 2 ‐thread with  k pt p− + 1i
t

i=1 ≥ and t 3≥ .
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Proof of Claim 5. Suppose to the contrary thatG″ has a valid k k k( , , …, )t1 2 ‐threadTx such
that  k pt p− + 1i

t
i=1 ≥ and t d x= ( ) 3G″ ≥ . For each i t[ ]∈ , let xi be the end vertex

(other than x) of the ki‐thread in the k k k( , , …, )t1 2 ‐thread, let yi be the neighbor of xi on
the ki‐thread, and let zi be the neighbor of x on the ki‐thread. Then
V T y y y V G V C( ) { , , …, } ( ) ( )x t1 2

″⧹ ⊆ ⧹ . By Claim 4, we have k p − 1i ≤ for any i t[ ]∈ .
Note that for each i t[ ]∈ , yi is not a sticking vertex since it is a 2‐vertex in G″. If x is a
vertex in V G( ), then the x y( , )i ‐thread from x to yi corresponds to a k( − 1)i ‐necklace
N x y( , )i inG V C− ( ) for each i t[ ]∈ . HenceG contains a valid k k k( − 1, − 1, …, − 1)t1 2 ‐
necklace Nx with end vertices y y y, , …, t1 2 . Since  k pt p− + 1i

t
i=1 ≥ , we have

 k p t p( − 1) ( − 1) − + 1i
t

i=1 ≥ , a contradiction to Claim 2(iii).
Assume instead that x is not a vertex inV G( ). Then x is a sticking vertex inG″, which

corresponds to a p‐cycle Kx in G V C− ( ). Thus, zi is an attachment‐vertex of Kx for each
i t[ ]∈ . Hence the z y( , )i i ‐thread corresponds to a k( − 2)i ‐necklace N z y( , )i i in G V C− ( )

for each i t[ ]∈ . Thus G contains a valid k k k( − 2, − 2, …, − 2)t1 2 ‐crown‐necklace with
end vertices y y y, , …, t1 2 . Similarly, we have  k p t p( − 2) ( − 2) − + 1i

t
i=1 ≥ by

 k pt p− + 1i
t

i=1 ≥ , which contradicts Claim 2(iii) again. □

Now we shall complete the proof by a discharging method on G″. Any face other than f0 is
called an internal face of G″. The vertices of V G V C( ) ( )″ ⧹ are called internal vertices of G″. The
degree d f( )G″ of a face f is the number of edges in its boundary, cut edges being counted twice.
Let F G( )″ be the set of faces of G″. From Euler Formula, we have

 

 


p

d v p d f p p
2

( ) − ( + 2) + ( ( ) − ( + 2)) = −2( + 2),
v V G

G
f F G

G
( ) ( )″

″

″

″

∈ ∈

which implies

 

 


p

d v p d f p d f p
2

( ) − ( + 2) + ( ( ) + ) + ( ( ) − ( + 2)) = −2.
v V G

G G
f F G f

G
( )

0
( ) { }″

″ ″

″
0

″

∈ ∈ ⧹

(2)

Assign an initial charge ch v d v p( ) = ( ) − ( + 2)
p

G0 2
″ for each v V G( )″∈ , ch f p( ) = 20 0 and

ch f d f p( ) = ( ) − ( + 2)G0 ″ for each f F G f( ) { }″
0∈ ⧹ . Hence the total charge is−2 by Equation (2).

We redistribute the charges according to the following rules.
(RI) Every p(4 + 8)+‐face of G″ gives charge 3

4
to each of its incident internal vertices.

(RII) Every 3+‐vertex of G″ gives charge 1

4
to each of its weakly adjacent internal 2‐vertices.

(RIII) The outer face f0 gives charge 2 to each of its incident vertices.
Note that in (RII) each 3+‐vertex of G″ gives no charge to its weakly adjacent 2‐vertices in

V C( ), since each vertex in V C( ) is not internal by definition.
Let ch denote the charge assignment after performing the charge redistribution using the

rules (RI), (RII), and (RIII).

Claim 6. ch f( ) 0≥ for each f F G( )″∈ .

Proof of Claim 6. By Claim 3, G″ is a plane graph of girth p without cycles of length
from p + 1 to p4( + 2) − 1. If d f p( ) =G″ , then f must be the outer face f0, and thus
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ch f p( ) = 20 0 . By (RIII), f sends charge 2 to each of its incident vertices, and hence
ch f ch f p( ) = ( ) − 2 = 00 0 . Now assume d f p( ) 4( + 2)G″ ≥ . Then f sends charge 3

4
to

each incident internal vertices by (RI), and so ch f ch f d f( ) ( ) − ( ) =G0
3

4
″≥

d f p d f d f p( ( ) − ( + 2)) − ( ) = ( ( ) − 4( + 2)) 0G G G
3

4

1

4
″ ″ ″ ≥ . □

Claim 7. ch v( ) 0≥ for each v V G( )″∈ .

Proof of Claim 7. First we assume d v( ) = 2G″ . Then ch v( ) = −20 . If v V C( )∈ , then v

receives charge 2 from f0 by (RIII). Thus ch v ch v( ) = ( ) + 2 = 00 . For an internal 2‐vertex
v, by Claims 1 and 4, v is weakly adjacent to two 3+‐vertices, and thus v receives charge

× 2
1

4
by (RII). By (RI), v receives charge × 2

3

4
from its incident faces. Hence

ch v( ) = −2 + + = 0
1

2

3

2
.

Now we assume d v( ) 3G″ ≥ . Let t v( ) be the number of internal 2‐vertices weakly
adjacent to v. By (RII), v sends charge t v( )

1

4
to its weakly adjacent internal 2‐vertices. If

v V C( )∈ , then t v p d v( ) ( − 1)( ( ) − 2)G″≤ as each thread in G″ contains at most p( − 1)

internal 2‐vertices by Claim 4. Note that v receives charge d v( ( ) − 1)G
3

4
″ from its incident

p(4 + 8)+‐faces by (RI), and receives charge 2 from f0 by (RIII). Then



 




ch v ch v t v d v

p
d v p p d v d v

p
d v p

p
p

p

( ) = ( ) −
1

4
( ) +

3

4
( ( ) − 1) + 2

2
( ) − ( + 2) −

1

4
( − 1)( ( ) − 2) +

3

4
( ( ) − 1) + 2

=
+ 4

4
( ) −

1

2
−

5

4
+ 4

4
3 −

1

2
−

5

4

=
+ 7

4
> 0.

G

G G G

G

0 ″

″ ″ ″

″

≥

≥ ⋅

Assume instead that v is an internal vertex. By Claims 4 and 5, t v pd v p( ) ( ) −G″≤ . By
(RI), v receives charge d v( )G

3

4
″ from its incident faces. Hence



 


ch v

p
d v p d v t v

p
d v p d v pd v p

p
d v p

p
p

( ) =
2

( ) − ( + 2) +
3

4
( ) −

1

4
( )

2
( ) − − 2 +

3

4
( ) −

1

4
( ( ) − )

=
+ 3

4
( ) −

3

4
− 2

+ 3

4
3 −

3

4
− 2

=
1

4
> 0.

G G

G G G

G

″ ″

″ ″ ″

″

≥

≥ ⋅

By Equation (2) and Claims 6 and 7, we have
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   ch v ch f ch v ch f−2 = ( ) + ( ) = ( ) + ( ) 0,
v V G f F G v V G f F G( ″)

0

( ″)

0

( ″) ( ″)

≥
∈ ∈ ∈ ∈

a contradiction. This contradiction completes the proof of Theorem 3.4. □

4 | THE FRACTIONAL COLORING

This section is devoted to prove Theorem 1.6. We first study some graphs with precoloring
extensions in Section 4.1, serving for reducible configurations, and then present the proof of
Theorem 1.6 in Section 4.2 by a discharging method.

4.1 | Precoloring graphs for fractional ( )k :
k− 1

2
‐coloring

We start with the following property on coloring of paths.

Lemma 4.1. Let P v v v= … t1 2 be a path with t k2 ≤ ≤ , and let φ be a fractional

( )k :
k − 1

2
‐coloring of P . Then  φ v φ v( ) ( )t

k t
1

−

2
∩ ≥ if t is odd, and  φ v φ v( ) ( )t

t
1

− 2

2
∩ ≤ if

t is even.

Proof. We prove by induction. Since φ is a fractional ( )k :
k − 1

2
‐coloring of P, we have

φ v φ v( ) ( ) =i i+1∩ ∅ for each i t[ − 1]∈ . Thus Lemma 4.1 holds for t = 2. If t = 3, noting

that φ v φ v k φ v( ( ) ( )) [ ] ( )1 3 2∪ ⊆ ⧹ , then    φ v φ v k φ v( ) ( ) − ( )1 3 2∪ ≤ , and thus φ
       ( )v φ v φ v φ v φ v φ v k( ) ( ) = ( ) + ( ) − ( ) ( ) + − − =

k k k k
1 3 1 3 1 3

− 1

2

− 1

2

− 1

2

− 3

2
∩ ∪ ≥ .

That is, Lemma 4.1 holds for t = 3. Assume Lemma 4.1 holds for any value smaller than t .
Now we consider φ v φ v( ) ( )t1 ∩ . First we assume t is even. Then t − 1 is odd, and

 φ v φ v( ) ( )t
k t

1 −1
− + 1

2
∩ ≥ by induction hypothesis. Since φ v φ v( ) ( ) =t t−1∩ ∅, we have

φ v φ v φ v φ v( ) ( ) ( ) ( )t t1 1 −1∩ ⊆ ⧹ , and thus      φ v φ v φ v φ v φ v( ) ( ) ( ) − ( ) ( )t t1 1 1 −1∩ ≤ ∩ ≤

− =
k k t t− 1

2

− + 1

2

− 2

2
. Now we assume t is odd. Then t − 1 is even, and φ v φ( )1 ∩

v( )t
t

−1
− 3

2
≤ by induction hypothesis. As φ v φ v( ) ( ) =t t−1∩ ∅, we have φ v φ v( ( ) ( ))t1 ∪ ⊆

k φ v φ v[ ] ( ( ) ( ))t−1 1⧹ ⧹ , which implies φ v φ v( ) ( )t1 ∪     k φ v φ v φ v− ( ) + ( ) ( )t t−1 1 −1≤ ∩ .

Thus         φ v φ v φ v φ v φ v φ v k φ( ) ( ) = ( ) + ( ) − ( ) ( ) + − + −t t t
k k k

1 1 1
− 1

2

− 1

2

− 1

2
∩ ∪ ≥

v φ v k( ) ( ) + − + − =t
k k k t k t

1 −1
− 1

2

− 1

2

− 1

2

− 3

2

−

2
∩ ≥ . Therefore, Lemma 4.1 holds by

induction. □

Recall that, for S V H( )⊂ , H is φS‐colorable if the precoloring φ of S can be extended to a

fractional ( )k :
k − 1

2
‐coloring of H . Note that the number + (−1)

k d x y k d x y− 2

4
( , ) − 2 ( , )

4
⋅ is always

an integer; in fact it is k d x y− 1− ( , )

2
if d x y( , ) is even, and d x y( , ) − 1

2
if d x y( , ) is odd.
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Lemma 4.2. Let C be a cycle of length k. Let φ be a precoloring of x y V C{ , } ( )⊆ . Then C
is φ x y{ , }‐colorable if and only if

 φ x φ y
k k d x y

( ) ( ) =
− 2

4
+ (−1)

− 2 ( , )

4
.d x y( , )∩ ⋅

Proof. Denote C x x x x= … k0 1 −1 0, where x x x y= , =t0 , and d x y t( , ) =
k − 1

2
≤ .

Assume that C is φ x y{ , }‐colorable, and let φ̃ be a fractional ( )k :
k − 1

2
‐coloring of C

extended by φ. Denote P x x x= … t1 0 1 and P x x x x= …k k t2 0 −1 −2 . Then P1 is a path of
order t + 1 and P2 is a path of order k t− + 1. Note that φ̃ also provides a fractional

( )k :
k − 1

2
‐coloring of P1 and of P2. If t is even, then by Lemma 4.1, we have

 φ x φ x˜( ) ˜( )t
k t

0
− − 1

2
∩ ≥ as  V P t( ) = + 11 is odd and  φ x φ x˜( ) ˜( )t

k t
0

− − 1

2
∩ ≤ as

 V P k t( ) = − + 12 is even. Thus    φ x φ x φ x φ x( ) ( ) = ˜( ) ˜( ) =t t
k t

0 0
− − 1

2
∩ ∩ . If t is odd,

then by Lemma 4.1, we have  φ x φ x˜( ) ˜( )t
t

0
− 1

2
∩ ≤ as  V P t( ) = + 11 is even and

 φ x φ x˜( ) ˜( )t
t

0
− 1

2
∩ ≥ as  V P k t( ) = − + 12 is odd. Hence   φ x φ x φ x φ( ) ( ) = ˜( ) ˜t0 0∩ ∩

x( ) =t
t − 1

2
.

Conversely, assume that  a φ x φ y= ( ) ( ) = + (−1)
k t k t− 2

4

− 2

4
∩ ⋅ . Without loss of

generality, we may assume { }φ x( ) = 1, 2, …,
k

0
− 1

2
. If t is even, we assume

φ x φ x a( ) ( ) = {1, 2, …, }t0 ∩ , and { }φ x φ x a a k( ) ( ) = + + 1, + + 2, …,t
k k

0
+ 1

2

+ 1

2
⧹ . If t

is odd, we assume { }φ x φ x a a( ) ( ) = − + 1, − + 2,t
k k k

0
− 1

2

− 1

2

− 1

2
∩ , and φ

{ }x φ x k a( ) ( ) = + 1, + 2, …, − − 1t
k k

0
− 1

2

− 1

2
⧹ . We define a coloring by setting

{ }φ x i k i k i k( ) = 1, 2, …, − { − + 1, − + 2, …, }i
k

2
− 1

2
∪ and {φ x i( ) = − ,i

k
2 +1

+ 1

2

}i k i− + 1, …, − − 1
k + 1

2
for i0

k − 1

2
≤ ≤ . It is routine to check that φ is a fractional

( )k :
k − 1

2
‐coloring of C. □

Lemma 4.3. Let N x y( , ) be a necklace with a precoloring φ of x y{ , }. Suppose that the
distance between x and y is d x y t( , ) =

k + 1

2
≤ . If

 φ x φ y
k k t

( ) ( ) =
− 2

4
+ (−1)

− 2

4
,t∩ ⋅

then N x y( , ) is φ x y{ , }‐colorable.

Proof. We prove by induction. The statement holds for t = 0, 1. Assume that it holds for
any value smaller than t . If x and y are in the same k‐cycle, then the statement holds
from Lemma 4.2. Otherwise, we can always find a vertex u in the shortest x y( , )‐path
xz z y… t1 −1 which divides the necklace into two separated necklaces that one is from x to
u and the other is from u to y. More precisely, if xz1 is not contained in a k‐cycle, then we
choose u z= 1; otherwise, we choose u z= j where j is the largest index such that z zj j−1 is
in the k‐cycle containing xz1. Note that u is a cut vertex of H that divides the necklace H
into two separated necklaces. Now we shall try to provide a coloring φ u( ) of u and then
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apply induction on the x u( , )‐necklace and on the u y( , )‐necklace. This can be achieved if
we can find a colors from φ x φ y( ) ( )⧹ , b colors from φ x φ y( ) ( )∩ , c colors from
φ y φ x( ) ( )⧹ , and the rest colors from k φ x φ y[ ] ( ( ) ( ))⧹ ∪ to formulate φ u( ) satisfying the
induction hypothesis.

Let d x u s( , ) = . Then d u y t s( , ) = − . Formally, we need to find a nonnegative integer
solution a b c( , , ) of the following system of inequalities:











 

 

 

 

a φ x φ y
k k t

b φ x φ y
k k t

c φ y φ x
k k t

k
a b c k φ x φ y

k k t

a b
k k s

b c
k k t s

0 ( ) ( ) =
4
− (−1)

− 2

4
,

0 ( ) ( ) =
− 2

4
+ (−1)

− 2

4
,

0 ( ) ( ) =
4
− (−1)

− 2

4
,

0
− 1

2
− − − [ ] ( ( ) ( )) = 1 +

− 2

4
+ (−1)

− 2

4
,

+ =
− 2

4
+ (−1)

− 2

4
,

+ =
− 2

4
+ (−1)

− 2( − )

4
.

t

t

t

t

s

t s−

≤ ≤ ⧹ ⋅

≤ ≤ ∩ ⋅

≤ ≤ ⧹ ⋅

≤ ≤ ⧹ ∪ ⋅

⋅

⋅

Let

α
k t

β
k s

γ
k t s

= (−1)
− 2

4
, = (−1)

− 2

4
, and = (−1)

− 2( − )

4
.t s t s−⋅ ⋅ ⋅

Plugging a b β= − + +
k − 2

4
and c b γ= − + +

k − 2

4
into the above system of

inequalities, we have











α β b β

b α

α γ b γ

β γ b α β γ

+ − + ,

0 + ,

+ − + ,

+ − + + + .

k

k

k

k

1

2

− 2

4

− 2

4

1

2

− 2

4

1

2 4

≤ ≤

≤ ≤

≤ ≤

≤ ≤

Let

{ }M α β α γ β γ= max + −
1

2
, 0, + −

1

2
, + −

1

2
and

{ }N
k

β
k

α
k

γ
k

α β γ= min
− 2

4
+ ,

− 2

4
+ ,

− 2

4
+ ,

4
+ + + .

We can actually show that M N0 ≤ ≤ by a one‐by‐one compression, and then setting
b M= provides a valid solution of the above system of inequalities. This method will be
applied in a similar but more complicated Lemma 4.5 below.

Here an alternative way to do so is to check case by case on the parity as follows.
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• If t is odd and s is odd, then set b M N
s

= = =
− 1

2
.

• If t is odd and s is even, then set b M N
t s

= = =
− − 1

2
.

• If t is even and s is odd, then set b M N= = = 0.

• If t is even and s is even, then set b M N
k t

= = =
− 1 −

2
.

Then this solution a b c( , , ) provides a coloring φ u( ) as desired. □

We present this version of the proof of Lemma 4.3 to provide an overview of the more
complicated Lemma 4.5 below when d x y( , ) is relatively large. We also need the following
technical inequality.

Proposition 4.4. Let s t, be integers with s1
k − 1

2
≤ ≤ and t s +

k k+ 1

2

+ 1

2
≤ ≤ . Denote

β
k s

γ
k t s

= (−1)
− 2

4
and = (−1)

− 2( − )

4
.s t s−⋅ ⋅

Let ℓ be a fixed integer with − ℓ −
k t t−

2

(−1) + 1

4

− 1

2

(−1) + 1

4

t t

≤ ≤ . Define

{ }β
k

γ
k
β γM = max + ℓ −

4
, 0, + ℓ −

4
, + −

1

2
and

{ }k
β

k
γ β γN = min

− 2

4
+ , ℓ,

− 2

4
+ , + + ℓ +

1

2
.

Then M and N are integers satisfying

M N0 .≤ ≤

Proof. It is routine to check that each term inM and inN is an integer by discussing the
parity of t and s. To show that M N≤ , is suffices to check 16 inequalities one by one.

• { }β β γ β γN+ ℓ − = min + , ℓ, + , + + ℓ +
k k k

4

− 2

4

− 2

4

1

2
≤ ;

• { }β γ β γN0 = min + , ℓ, + , + + ℓ +
k k− 2

4

− 2

4

1

2
≤ ;

• { }γ β γ β γN+ ℓ − = min + , ℓ, + , + + ℓ +
k k k

4

− 2

4

− 2

4

1

2
≤ ;

• { }β γ β γ β γN+ − = min + , ℓ, + , + + ℓ +
k k1

2

− 2

4

− 2

4

1

2
≤ .

It turns out to become the following:

• ℓ k − 1

2
≤ , β k

4
≤ , β γ− − ℓ

k − 1

2
≤ , γ−

k + 2

4
≤ ;
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• β−
k − 2

4
≤ , 0 ℓ≤ , γ−

k − 2

4
≤ , γ β− − ℓ +

1

2
≤ ;

• γ β− − ℓ
k − 1

2
≤ , γ k

4
≤ , ℓ k − 1

2
≤ , β−

k + 2

4
≤ ;

• γ k

4
≤ , β γ+ ℓ +

1

2
≤ , β k

4
≤ , 0 ℓ + 1≤ .

Except some trivial ones that  β k

4
≤ ,  γ k

4
≤ , 0 ℓ

k − 1

2
≤ ≤ , this reduces to the following:

• γ β− − ℓ +
1

2
≤ , β γ+ ℓ +

1

2
≤ , β γ− − ℓ

k − 1

2
≤ , and γ β− − ℓ

k − 1

2
≤ .

Those inequalities above are all true since

•      γ β γ β+ + + = ℓ +
k s k t s k t− 2

4

− 2( − )

4

−

2

1

2
≤ ≤ ≤ and

•      β γ β γ− + ℓ + + ℓ + + =
k s k t s t k− 2

4

− 2( − )

4

− 1

2

− 1

2
≤ ≤ .

This proves that M N0 ≤ ≤ . □

Lemma 4.5. Let N x y( , ) be a necklace with a precoloring φ of x y{ , }. Suppose that the
distance between x and y satisfies d x y t( , ) =

k + 1

2
≥ . If

 k t
φ x φ y

t−

2
−

(−1) + 1

4
( ) ( )

− 1

2
−

(−1) + 1

4
,

t t

≤ ∩ ≤

then H is φ x y{ , }‐colorable.

Proof. The basic case t =
k + 1

2
has already been handled in Lemma 4.3. We shall prove

Lemma 4.5 by induction. Similarly, there exists a cut vertex u of H in the shortest x y( , )‐
path that divides the necklace into two parts (two separated necklaces), one is from x to u
and the other is from u to y. We choose such cut vertex u with the smallest distance from
x . So either xu is an edge or x and u are in the same k‐cycle, and hence we have

d x u s( , ) =
k − 1

2
≤ . We shall divide the discussion into two cases depending on the value

of d u y t s( , ) = − .

Case 1. d u y t s( , ) = −
k + 1

2
≤ .

Note that in this case t s k+
k + 1

2
≤ ≤ . Now we shall try to find a colors from

φ x φ y( ) ( )⧹ , b colors from φ x φ y( ) ( )∩ , c colors from φ y φ x( ) ( )⧹ , and the rest colors from
k φ x φ y[ ] ( ( ) ( ))⧹ ∪ to formulate φ u( ) satisfying the induction hypothesis. Formally,
similar to the proof of Lemma 4.3, we need to find a nonnegative integer solution a b c( , , )

of the following system of inequalities:
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a φ x φ y

b φ x φ y

c φ y φ x

k
a b c k φ x φ y

a b
k k s

b c
k k t s

0 ( ) ( ) ,

0 ( ) ( ) ,

0 ( ) ( ) ,

0
− 1

2
− − − [ ] ( ( ) ( )) ,

+ =
− 2

4
+ (−1)

− 2

4
,

+ =
− 2

4
+ (−1)

− 2( − )

4
.

s

t s−

≤ ≤ ⧹

≤ ≤ ∩

≤ ≤ ⧹

≤ ≤ ⧹ ∪

⋅

⋅

Let  φ x φ yℓ = ( ) ( )∩ be a fixed number with − ℓ −
k t t−

2

(−1) + 1

4

− 1

2

(−1) + 1

4

t t

≤ ≤ .

Denote

β
k s

γ
k t s

= (−1)
− 2

4
and = (−1)

− 2( − )

4
.s t s−⋅ ⋅

Then by plugging a and c into the above system of inequalities, it reduces to the
following:











β b β

b

γ b γ

β γ b β γ

+ ℓ − + ,

0 ℓ,

+ ℓ − + ,

+ − + + ℓ + .

k k

k k

4

− 2

4

4

− 2

4

1

2

1

2

≤ ≤

≤ ≤

≤ ≤

≤ ≤

Let

{ }β
k

γ
k
β γM = max + ℓ −

4
, 0, + ℓ −

4
, + −

1

2
and

{ }k
β

k
γ β γN = min

− 2

4
+ , ℓ,

− 2

4
+ , + + ℓ +

1

2
.

By Proposition 4.4,M andN are integers satisfying M N0 ≤ ≤ . Therefore, we choose

b a
k k s

c
k k t s

M M

M

= , =
− 2

4
+ (−1)

− 2

4
− , and

=
− 2

4
+ (−1)

− 2( − )

4
− ,

s

t s−

⋅

⋅

providing a desired nonnegative integer solution a b c( , , ).

Case 2. d u y t s( , ) = −
k + 3

2
≥ .
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We are still trying to find a colors from φ x φ y( ) ( )⧹ , b colors from φ x φ y( ) ( )∩ , c colors
from φ y φ x( ) ( )⧹ , and the rest colors from k φ x φ y[ ] ( ( ) ( ))⧹ ∪ to form φ u( ) satisfying the
induction hypothesis. This formulates similar system of inequalities as follows:











 
 
 

 

a φ x φ y

b φ x φ y

c φ y φ x

k
a b c k φ x φ y

a b
k k s

k t s
b c

t s

0 ( ) ( ) ,

0 ( ) ( ) ,

0 ( ) ( ) ,

0
− 1

2
− − − [ ] ( ( ) ( )) ,

+ =
− 2

4
+ (−1)

− 2

4
,

− +

2
−

(−1) + 1

4
+

− − 1

2
−

(−1) + 1

4
.

s

t s t s− −

≤ ≤ ⧹

≤ ≤ ∩

≤ ≤ ⧹

≤ ≤ ⧹ ∪

⋅

≤ ≤

Notice that
k − 2 − (−1)

4

k+1
2

is an integer (this value comes from the case

d x y( , ) =
k + 1

2
), and we have

k t s k t s− +

2
−

(−1) + 1

4

− 2 − (−1)

4

− − 1

2
−

(−1) + 1

4
.

t s t s− −k+1
2

≤ ≤

So it is enough to find a solution a b c( , , ) with the last inequality replaced by

b c
k

+ =
− 2 − (−1)

4
.

k+1
2

Let  φ x φ yℓ = ( ) ( )∩ be a fixed number with − ℓ −
k t t−

2

(−1) + 1

4

− 1

2

(−1) + 1

4

t t

≤ ≤ .
Note that 0 ℓ

k − 1

2
≤ ≤ .

Denote

β
k s

γ= (−1)
− 2

4
and = −(−1)

1

4
.s k+1

2⋅ ⋅

Then with similar calculation, by plugging a and c into the above system of
inequalities, it becomes the following:











β b β

b

γ b γ

β γ b β γ

+ ℓ − + ,

0 ℓ,

+ ℓ − + ,

+ − + + ℓ + .

k k

k k

4

− 2

4

4

− 2

4

1

2

1

2

≤ ≤

≤ ≤

≤ ≤

≤ ≤

We still let
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{ }β
k

γ
k
β γM = max + ℓ −

4
, 0, + ℓ −

4
, + −

1

2
and

{ }k
β

k
γ β γN = min

− 2

4
+ , ℓ,

− 2

4
+ , + + ℓ +

1

2
.

By Proposition 4.4 with t s− =
k + 1

2
, M and N are integers satisfying M N0 ≤ ≤ .

Therefore, we can choose b M= and corresponding a and c to form a desired solution
a b c( , , ). This completes the proof. □

By Lemma 4.5, we have the following corollary.

Corollary 4.6. Let N x y( , ) be a necklace. If d x y k( , ) ≥ , then N x y( , ) is φ x y{ , }‐colorable
for any precoloring φ of x y{ , }.

Recall Definition 2.7 that a k k k( , ; )1 2 3 ‐bull‐necklace is a subgraph obtained from a k k k( , , )1 2 3 ‐
thread by applying Ck‐replacement operation on some edges of the k3‐thread. For t1

k − 1

2
≤ ≤ ,

let B t s( , )v be a t t r( − 1, − 1; )‐bull‐necklace Nv with end vertices x y z, , and d v z s( , ) = .

Lemma 4.7. For a bull‐necklace B t s( , )v with end vertices x y z, , , if t1
k − 1

2
≤ ≤ and

t s k+ ≥ , then B t s( , )v is φ x y z{ , , }‐colorable for any precoloring φ of x y z{ , , } satisfying

 φ x φ y( ) ( ) =
k t− 1− 2

2
∩ .

Proof. Let φ be a precoloring of x y z{ , , } such that  φ x φ y( ) ( ) =
k t− 1− 2

2
∩ . Denote

A φ x φ y= ( ) ( )⧹ , B φ x φ y= ( ) ( )∩ , C φ y φ x= ( ) ( )⧹ , and D k φ x φ y= [ ] ( ( ) ( ))⧹ ∪ . Then

   A C t= = ,  B =
k t− 1− 2

2
, and  D =

k t+ 1− 2

2
. Let S be a subset of k[ ] such that S B= if t

is even and S D= if t is odd. Then  S = −
k t+ 1− 2

2

(−1) + 1

2

t

. Denote S S φ z= ( )1 ⧹ and

S S φ z= ( )2 ∩ . □

We first make the following claim.

Claim 1. Each of the following holds:

(i) either    A φ z S( ) − −
t + 1

2

(−1) + 1

4 2

t

∩ ≥ or    C φ z S( ) − −
t + 1

2

(−1) + 1

4 2

t

∩ ≥ ;

(ii) either    A φ z S( ) − −
t + 1

2

(−1) + 1

4 1

t

⧹ ≥ or    C φ z S( ) − −
t + 1

2

(−1) + 1

4 1

t

⧹ ≥ .

Proof of Claim 1.

(i) Notice that
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A φ z C φ z A C S φ z S

A C S φ z A C S φ z

S

t t
k t k

k S

t S

t
S

( ) + ( ) = ( ) ( ) −

= + ( ) − ( ) ( )

−

+ +
+ 1 − 2

2
−

(−1) + 1

2
+

− 1

2

− −

= −
(−1) + 1

2
−

2
+ 1

2
−

(−1) + 1

4
− − 1.

t

t

t

2

2

2

2

2

∩ ∩ ∪ ∪ ∩

∪ ∪ ∪ ∪ ∪

≥

≥

Hence (i) holds.
(ii) Similarly, notice that

       


 


  

 


  



A φ z C φ z A C S φ z S

t
k t k

S

t S

t
S

( ) + ( ) = ( ) ( ) −

2 +
+ 1 − 2

2
−

(−1) + 1

2
−

− 1

2
−

= + 1 −
(−1) + 1

2
−

2
+ 1

2
−

(−1) + 1

4
− .

t

t

t

1

1

1

1

⧹ ⧹ ∪ ∪ ⧹

≥

≥

Thus (ii) holds. □

Next, we show that there are certain subsets of A and C of large size for candidates of φ v( ).

Claim 2. There exist A A φ z( )1 ⊆ ⧹ , A A φ z( )2 ⊆ ∩ , C C φ z( )1 ⊆ ⧹ , and C C φ z( )2 ⊆ ∩

such that    A A+ = +
t

1 2
− 1

2

(−1) + 1

4

t

,    C C+ = +
t

1 2
− 1

2

(−1) + 1

4

t

,      A S C+ +1 1 1 ≥

−
t + 1

2

(−1) + 1

4

t

, and      A S C+ + −
t

2 2 2
+ 1

2

(−1) + 1

4

t

≥ .

Proof of Claim 2. By Claim 1(i), we may assume without loss of generality that

   A φ z S( ) − −
t + 1

2

(−1) + 1

4 2

t

∩ ≥ .

If    C φ z S( ) − −
t + 1

2

(−1) + 1

4 1

t

⧹ ≥ , then we can choose C C φ z= ( )1 ⧹ and

C C φ z( )2 ⊆ ∩ such that    C C+ = +
t

1 2
− 1

2

(−1) + 1

4

t

and    C S− −
t

1
+ 1

2

(−1) + 1

4 1

t

≥ .

This is feasible since  C t= +
t − 1

2

(−1) + 1

4

t

≥ . By    A φ z S( ) − −
t + 1

2

(−1) + 1

4 2

t

∩ ≥ , we

can also choose A A φ z= ( )1 ⧹ and A A φ z( )2 ⊆ ∩ such that    A A+ = +
t

1 2
− 1

2

(−1) + 1

4

t

and    A S− −
t

2
+ 1

2

(−1) + 1

4 2

t

≥ . Hence we have          A S C S C+ + +1 1 1 1 1≥ ≥

−
t + 1

2

(−1) + 1

4

t

and          A S C A S+ + + −
t

2 2 2 2 2
+ 1

2

(−1) + 1

4

t

≥ ≥ .

Assume instead that    C φ z S( ) < − −
t + 1

2

(−1) + 1

4 1

t

⧹ . Notice that
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C φ z C C φ z

t
t

S

t
t

S S

t k t
S

k t
S

t
S

( ) = − ( )

−
+ 1

2
−

(−1) + 1

4
−

= −
+ 1

2
+

(−1) + 1

4
+ ( − )

=
− 1

2
+

(−1) + 1

4
+

+ 1 − 2

2
−

(−1) + 1

2
−

=
−

2
−

(−1) + 1

4
−

+ 1

2
−

(−1) + 1

4
− .

t

t

t t

t

t

1

2

2

2

2

∩ ⧹

≥

≥

Hence we can choose C C φ z= ( )1 ⧹ and C C φ z( )2 ⊆ ∩ such that

   C C+ = +
t

1 2
− 1

2

(−1) + 1

4

t

and    C S− −
t

2
+ 1

2

(−1) + 1

4 2

t

≥ . By Claim 1(ii) and as

   C φ z S( ) < − −
t + 1

2

(−1) + 1

4 1

t

⧹ , we have    A φ z S( ) − −
t + 1

2

(−1) + 1

4 1

t

⧹ ≥ . Thus we can

select A A φ z= ( )1 ⧹ and A A φ z( )2 ⊆ ∩ such that    A A+ = +
t

1 2
− 1

2

(−1) + 1

4

t

and

   A S− −
t

1
+ 1

2

(−1) + 1

4 1

t

≥ . Therefore, we have          A S C A S+ + +1 1 1 1 1≥ ≥

−
t + 1

2

(−1) + 1

4

t

and          A S C S C+ + + −
t

2 2 2 2 2
+ 1

2

(−1) + 1

4

t

≥ ≥ as desired.

Now we choose such A A φ z( )1 ⊆ ⧹ , A A φ z( )2 ⊆ ∩ , C C φ z( )1 ⊆ ⧹ , and C C φ z( )2 ⊆ ∩

as in Claim 2. Let φ v A A S S C C( ) = 1 2 1 2 1 2∪ ∪ ∪ ∪ ∪ . Then

  

 


 


 


 


 


φ v

t k t t

k

( ) =
− 1

2
+

(−1) + 1

4
+

+ 1 − 2

2
−

(−1) + 1

2
+

− 1

2
+

(−1) + 1

4

=
− 1

2
.

t t t

Moreover,          φ v φ x A A S S( ) ( ) = + + + =
k t

1 2 1 2
− 1−

2
∩ if t is even and

     φ v φ x A A( ) ( ) = + =
t

1 2
− 1

2
∩ if t is odd;     φ v φ y C C( ) ( ) = +1 2∩

    S S+ + =
k t

1 2
− 1−

2
if t is even and φ v φ( ) ∩     x C C( ) = + =

t
1 2

− 1

2
if t is odd.

Notice that A S C k φ z( ) [ ] ( )1 1 1∪ ∪ ⊂ ⧹ and A S C φ z( ) ( )2 2 2∪ ∪ ⊂ . Hence by Claim 2
we have

  

 


t

φ v φ z
k t+ 1

2
−

(−1) + 1

4
( ) ( )

− 1

2
−

+ 1

2
−

(−1) + 1

4
.

t t

≤ ∩ ≤

Since s t k+ ≥ , we have



 


k s t k t

s

−

2
−

(−1) + 1

4

+ 1

2
−

(−1) + 1

4
and

− 1

2
−

+ 1

2
−

(−1) + 1

4

− 1

2
−

(−1) + 1

4
,

s t t

s

≤

≤

which implies
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 k s
φ v φ z

s−

2
−

(−1) + 1

4
( ) ( )

− 1

2
−

(−1) + 1

4
.

s s

≤ ∩ ≤

Thus B t s( , )v is φ x y z v{ , , , }‐colorable by Lemmas 4.3 and 4.5. □

4.2 | The proof of Theorem 1.6

Now we are ready to prove Theorem 1.6 restated below in terms of plane graph.

Theorem 1.6. For any odd integer k 5≥ , every plane graph of girth at least k without cycles of

length from k + 1 to






k

22

3
is fractional ( )k :

k − 1

2
‐colorable.

Proof. Suppose, for a contradiction, that G is a counterexample with    V G E G( ) + ( )

minimized. □

Claim 1. G is 2‐connected. In particular, δ G( ) 2≥ .

Proof of Claim 1. Clearly, G is connected. If G is not 2‐connected, then there exist
proper induced subgraphs G1 and G2 of G and a vertex v V G( )2∈ such that
E G E G E G( ) = ( ) ( )1 2∪ and V G V G v( ) ( ) = { }1 2∩ . By the minimality of G, G1 has a

fractional ( )k :
k − 1

2
‐coloring φ1 and G2 has a fractional ( )k :

k − 1

2
‐coloring φ2. Exchange

the colors if needed such that φ v φ v( ) = ( )1 2 , then φ1 and φ2 combine to become a

( )k :
k − 1

2
‐coloring of G, which is a contradiction. □

For t1
k − 1

2
≤ ≤ , let F t s( , )v be a graph obtained from a bull‐necklace B t s( , )v with end

vertices x y z, , by joining a new x y( , )‐path of length k t− 2 connecting x and y, where the
vertices in the new x y( , )‐path may have arbitrary degrees in G. That is, F t s( , )v consists of a
k‐cycle Cv and a necklace N v z( , ) with a common vertex v, where in the k‐cycle Cv there exist
two t( − 1)‐threads, one is from x to v and the other is from y to v.

Claim 2. G contains no F t s( , )v with t1
k − 1

2
≤ ≤ and t s k+ ≥ , where s d v z= ( , ).

Proof of Claim 2. Suppose to the contrary that G contains an F t s( , )v with t1
k − 1

2
≤ ≤

and t s k+ ≥ . By the minimality of G, G V N v z v z− ( ( ( , )) { , })⧹ has a ( )k :
k − 1

2
‐coloring

φ. If t2
k − 1

2
≤ , then d x y t( , ) = 2G , and if t2

k + 1

2
≥ , then d x y k t( , ) = − 2G . By

Lemma 4.2, we always have  φ x φ y( ) ( ) =
k t− 1− 2

2
∩ . Let φ′ be the restriction of φ to

G V B t s x y z− ( ( ( , )) { , , })v ⧹ . As  φ x φ y′( ) ′( ) =
k t− 1− 2

2
∩ , B t s( , )v is φ′x y z{ , , } ‐colorable by

Lemma 4.7. That is, φ′ can be extended to a ( )k :
k − 1

2
‐coloring of G, which is a

contradiction. □

HU AND LI | 337



From G, we obtain a subgraph G′ as follows: for each facial k‐cycle C of G, if there exists a
2‐vertex in C, then we delete all the 2‐vertices of a longest thread of C. Clearly, the obtained
graphG′ is a plane graph of girth at least k, and contains no cycles of length from k + 1 to









k22

3
;

furthermore, each facial k‐cycle ofG′ contains no 2‐vertices. It is easy to see thatG′ has minimal
degree at least 2 by its construction.

Let T v x( , ) be a v x( , )‐thread of G′ and let u N v V T v x= ( ) ( ( , ))G′ ∩ . If there exists
w N v u( ) { }G′∈ ⧹ such that vu and vw are in a common k‐cycle of G, then we say v is a bad end
vertex of T v x( , ); otherwise, v is called a good end vertex of T v x( , ).

Claim 3. Let T v x( , ) be a v x( , )‐thread of G′ with a good end vertex v. Then
d v x k( , ) − 1G′ ≤ .

Proof of Claim 3. Suppose to the contrary that d v x k( , )G′ ≥ . If x is also a good end
vertex of T v x( , ), then the thread T v x( , ) in G′ corresponds to a necklace H with end

vertices v x, in G. By the minimality of G, G V H v x− ( ( ) { , })⧹ has a ( )k :
k − 1

2
‐coloring φ.

Since d v x d v x k( , ) = ( , )G G′ ≥ by construction, H is φ v x{ , }‐colorable by Corollary 4.6. That

is, φ can be extended to a ( )k :
k − 1

2
‐coloring of G, which is a contradiction.

Therefore we assume that x is a bad end vertex of T v x( , ). By definition, let
y N x V T v x= ( ) ( ( , ))G′ ∩ such that there exists a k‐cycle Cx of G containing both xy and
xz for some z N x y( ) { }G′∈ ⧹ . Let w V C V T v x( ) ( ( , ))x∈ ∩ such that d x w( , )G as large as
possible. By the construction of G′, we obtain that the x w( , )‐thread in G satisfies
d x w( , )

k − 1

2
≤ , and that there is a deleted thread from w to some vertex, say w u( , )‐

thread, in the k‐cycle Cx such that d u w d x w( , ) ( , )≥ . Thus G contains a bull‐necklace
B d w x d w v( ( , ), ( , ))w , which provides an F d w x d w v( ( , ), ( , ))w in G, contradicting to
Claim 2. □

Claim 4. G′ contains no ( )k3 − 3

2

+
‐thread.

Proof of Claim 4. Suppose to the contrary that G′ has a ( )k3 − 3

2

+
‐thread T v x( , ). Then

d v x d v x( , ) = ( , )G G
k

′
3 − 1

2
≥ . By Claim 3, v and x are both bad end vertices of T v x( , ). Let

u be the neighbor of v in T v x( , ). Then there exists a k‐cycle Cv of G containing both vu

and vw for some w N v u( ) { }G′∈ ⧹ . Let y V C V T v x( ) ( ( , ))v∈ ∩ such that d v y( , )G is as

large as possible. By the construction of G′, we have d v y( , )
k − 1

2
≤ , and so

d x y d v x d v y k( , ) = ( , ) − ( , ) ≥ . Now T v x V T v x V C y( , ) − ( ( ( , )) ( ) { })v∩ ⧹ is an x y( , )‐
thread from x to y in G′ with y being a good end vertex, which is a contradiction to
Claim 3. □

Claim 5. G′ contains no k k k( , , )1 2 3 ‐thread such that k k k+ +
k

1 2 3
11 − 17

3
≥ .

Proof of Claim 5. Suppose to the contrary that G′ has a k k k( , , )1 2 3 ‐vertex v such

that k k k+ +
k

1 2 3
11 − 17

3
≥ with end vertices x y z, , . Then d v x d v y( , ) + ( , ) +G G′ ′

d v z( , )G
k

′
11 − 8

3
≥ .
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If there are no two edges incident to v inG′ lying in a common k‐cycle ofG, then we may
assume, without loss of generality, that d v x d v x d v y d v z( , ) ( ( , ) + ( , ) + ( , )) >G G G G′

1

3
′ ′ ′≥ k.

Now the x v( , )‐thread from x to v has length at least k with v as a good end vertex, which is a
contradiction to Claim 3.

If there exist two edges incident to v inG′ containing in a k‐cycleCv ofG, then we may
suppose that Cv has no common vertex other than v with the v z( , )‐thread T v z( , ). Thus
v is a good end vertex of the v z( , )‐thread T v z( , ), and so d v z k( , ) − 1G′ ≤ by Claim 3.
Let u be the common vertex of Cv and the v x( , )‐thread T v x( , ) such that d v u( , )G as
large as possible, and let w be the common vertex of Cv and the v y( , )‐thread T v y( , ) such

that d v w( , )G as large as possible. By the construction of G′, we have

d v u d v w( , ) + ( , )G G
k

′ ′
2

3
≤ , since the deleted u w( , )‐thread is a longest thread in Cv.

Now we have

d x u d y w d v x d v y d v z d v u d v w

d v z

k k
k k

( , ) + ( , ) = ( , ) + ( , ) + ( , ) − ( ( , ) + ( , ))

− ( , )

11 − 8

3
−

2

3
− ( − 1) = 2 −

5

3
.

G G G G G G G

G

′ ′ ′ ′ ′ ′ ′

′

≥

Thus d x u d y w kmax{ ( , ), ( , )}G G′ ′ ≥ , say d x u k( , )G′ ≥ . Hence the x u( , )‐thread T x u( , ) is
of length at least k with u as a good end vertex, a contradiction to Claim 3. □

Now we complete the proof by a discharging method on G′.
Let F G( ′) be the set of faces of G′. From Euler Formula, we have

 

 


k

d v k d f k k
− 2

2
( ) − + ( ( ) − ) = −2 .

v V G
G

f F G
G

( ′)

′

( ′)

′

∈ ∈

(3)

Assign an initial charge ch v d v k( ) = ( ) −
k

G0
− 2

2
′ for each v V G( ′)∈ , and

ch f d f k( ) = ( ) −G0 ′ for each f F G( ′)∈ . Hence the total charge is k−2 by Equation (3).

We redistribute the charges according to the following rules.

(R1) Every






k22

3

+
‐face of G′ gives charge 19

22
to each of its incident vertices.

(R2) Every 3+‐vertex of G′ gives charge 3

22
to each of its weakly adjacent 2‐vertices.

Let ch denote the charge assignment after performing the charge redistribution using rules
(R1) and (R2).

Claim 6. ch f( ) 0≥ for f F G( ′)∈ .

Proof of Claim 6. Clearly, each k‐face f has charge ch f ch f( ) = ( ) = 00 . Each






k22

3

+
‐

face f sends charge 19

22
to each incident vertices by (R1). So ch f( ) =

ch f d f d f k d f d f k( ) − ( ) = ( ( ) − ) − ( ) = ( ) − 0G G G G0
19

22
′ ′

19

22
′

3

22
′ ≥ as dG′







f( )

k22

3
≥ . □
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Claim 7. ch v( ) 0≥ for v V G( ′)∈ .

Proof of Claim 7. Let v be a vertex of G′. Then d v( ) 2G′ ≥ by Claim 1 and the
construction of G′.

First we assume d v( ) = 2G′ . Then ch v( ) = −20 . By Claims 1 and 4, v is weakly

adjacent to two 3+‐vertex, and thus v receives charge × 2
3

22
by (R2). By (R1), v receives

charge × 2
19

22
from its two incident faces. Hence ch v( ) = −2 + × 2 + × 2 = 0

3

22

19

22
.

Now we assume d v( ) 3G′ ≥ . Let t v( ) be the number of 2‐vertices weakly adjacent to v.
Suppose v is adjacent to r v( ) facial k‐cycles. SinceG′ contains no cycles of length from k + 1 to







k22

3
, any two k‐cycles ofG′ have no edges in common, and thus r v( )

d v( )

2
G′≤ . By Claim 4 and

by the construction ofG′, each thread incident to v contains at most ( )− 1
k3 − 3

2
2‐vertices and

each k‐cycle contains no 2‐vertices, and so we have t v d v r v( ) ( ( ) − 2 ( ))
k

G
3 − 5

2
′≤ . By (R1), v

receives charge d v r v( ( ) − ( ))G
19

22
′ from its incident faces. By (R2), v sends 3/22 to each of its

weakly adjacent 2‐vertices. Therefore, we have



 


ch v

k
d v k d v r v t v( ) =

− 2

2
( ) − +

19

22
( ( ) − ( )) −

3

22
( ).G G′ ′ (4)

Assume that d v( ) 4G′ ≥ . By Equation (4), it follows from t v d v r v( ) ( ( ) − 2 ( ))
k

G
3 − 5

2
′≤

that

ch v
k

d v k d v r v
k

d v r v

k
d v k

k
r v

k
d v k

k
k

k

( )
− 2

2
( ) − +

19

22
( ( ) − ( )) −

3

22
×

3 − 5

2
( ( ) − 2 ( ))

=
13 + 9

44
( ) − +

9 − 34

22
( )

13 + 9

44
( ) −

13 + 9

44
4 −

=
2 + 9

11
> 0.

G G G

G

G

′ ′ ′

′

′

≥

≥

≥ ⋅

Assume instead that d v( ) = 3G′ . Then ch v( ) =
k

0
− 6

2
and r v( ) 1≤ . If r v( ) = 1, then

t v( )
k3 − 5

2
≤ by Claim 4. Thus by Equation (4) we have ch v( ) = + ×

k − 6

2

19

22

2 − × =
k k3

22

3 − 5

2

13 − 41

44

6

11
≥ . If r v( ) = 0, then t v k( ) (11 − 17)

1

3
≤ by Claim 5. Thus by

Equation (4) we have ch v( ) = + × 3 − × = > 0
k k− 6

2

19

22

3

22

11 − 17

3

4

11
. This proves Claim 7.

Combining Equation (3), Claims 6 and 7, we have

   k ch v ch f ch v ch f−2 = ( ) + ( ) = ( ) + ( ) 0,
v V G f F G v V G f F G( ′)

0

( ′)

0

( ′) ( ′)

≥
∈ ∈ ∈ ∈

a contradiction. This contradiction finishes the proof of Theorem 1.6. □
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5 | CONCLUDING REMARKS

In this paper, we obtain two Steinberg‐type results on circular coloring and fractional coloring as
Theorems 1.3 and 1.6. Improving the bound to f p p p( ) ( − 2)≤ would provide solutions to Con-

jecture 1.1 for t p= − 1 when p 5≥ is a prime, and completely determining the value f p( ) seems
to be more challenging. Theorem 1.6 confirms the fractional coloring version of Conjecture 1.4 for

p 11≥ , since p p( − 2)
p22

3
≤ when p 11≥ . In a follow‐up paper [18], we also verify the remaining

cases (p = 5, 7) of the fractional coloring version of Conjecture 1.4 with refined arguments and
additional configurations. Those results provide evidence to Conjectures 1.1 and 1.4.

A nature question is to consider variations of Question 1.2 concerning odd cycles. However,

naive odd cycle versions of Theorems 1.3 and 1.6 are false, that is, for any t >
k − 1

2
, there exist

planar graphs G of odd girth k without odd cycles of length from k + 2 to t2 + 1 satisfying

χ G χ G( ) ( ) >c f
k

k

2

− 1
≥ . To see this, we construct a graph G by taking t2 disjoint copies of

k‐cycle, where each k‐cycle contains two distinguished edges x y y z,i i i i for each i t[2 ]∈ , adding
edges x y z y,i i i i+1 +1 for each i t[2 − 1]∈ , and adding a new vertex v to connect edges

vx vz vy, ,t t2 2 1. See Figure 3 for the construction ofG. We claim that χ G( ) >f
k

k

2

− 1
. In fact, if φ is a

fractional ( )ka a,
k − 1

2
‐coloring of G, then it is easy to show, by an argument similar to

Lemmas 4.1 and 4.2, that  φ x φ z a a( ) ( ) = −i i
k − 1

2
∩ . This implies φ y φ y( ) = ( )i i+1 for each

i t[2 − 1]∈ and φ y φ v( ) = ( )t2 , which indicates φ y φ v( ) = ( )1 . But there is an edge y v1 between

y1 and v, a contradiction. Hence χ G χ G( ) ( ) >c f
k

k

2

− 1
≥ .

Two k‐cycles are called adjacent if they share at least one common edge. Notice that the
above‐constructed graph G contains adjacent k‐cycles. It would be possible to consider the
following modified odd cycle versions without adjacent k‐cycles.

Question 5.1. Does there exist a smallest number g p( ) for each prime p 3≥ such that
every planar graph of odd girth p without adjacent p‐cycles and without odd cycles of
length from p + 2 to g p( ) is Cp‐colorable?

The results from [7,10,27] imply that g (3) = 7. It would be interesting to show the existence
of g p( ) for every prime p 5≥ . Furthermore, is it true that g p f p( ) ( ) + 1≤ ?

A similar question arises for fractional coloring.

FIGURE 3 Construction of G when t = 3 and k = 7
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Question 5.2. Does there exist a smallest number h k( ) for each odd integer k 3≥ such
that every planar graph of odd girth k without adjacent k‐cycles and without odd cycles of
length from k + 2 to h k( ) is fractional ( )k :

k − 1

2
‐colorable?

From Theorem 1.6, it is plausible that h k( ) exists as a linear function of k.
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