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Abstract A Steinberg-type conjecture on circular coloring is recently proposed that for any prime

p ≥ 5, every planar graph of girth p without cycles of length from p+1 to p(p−2) is Cp-colorable (that

is, it admits a homomorphism to the odd cycle Cp). The assumption of p ≥ 5 being prime number is

necessary, and this conjecture implies a special case of Jaeger’s Conjecture that every planar graph of

girth 2p − 2 is Cp-colorable for prime p ≥ 5. In this paper, combining our previous results, we show

the fractional coloring version of this conjecture is true. Particularly, the p = 5 case of our fractional

coloring result shows that every planar graph of girth 5 without cycles of length from 6 to 15 admits a

homomorphism to the Petersen graph.
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1 Introduction

Jaeger [12] in 1988 conjectured that every 9-edge-connected graph admits a circular 5/2-flow (or
equivalently, admits an orientation such that the indegree is congruent to the outdegree modulo
5 at each vertex). Jaeger observed that his conjecture implies the celebrated 5-Flow Conjecture
of Tutte [19]. He also extended Tutte’s 3-Flow, 5-Flow Conjectures and proposed a more
general circular flow conjecture that every 4k-edge-connected graph admits a circular 2k+1

k -flow.
Jaeger’s Circular Flow Conjecture was confirmed for highly connected graphs by Thomassen
[18] and later for 6k-edge-connected graphs by Lovász et al. [14], but it was disproved for k ≥ 3
recently in [9]. Tutte’s Flow Conjectures remain open as of today. The counterexamples of
Jaeger’s Circular Flow Conjecture presented in [9] are nonplanar graphs, and so it still remains
open for planar graphs, which can be equivalently stated below as homomorphism to odd cycles
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by duality. Here for any graph H, a graph is called H-colorable if it admits a homomorphism
to H.

Conjecture 1.1 ([12]) Every planar graph of girth at least 4k is C2k+1-colorable.

Conjecture 1.1 has received considerable attentions, and many progresses have been made
in [2, 7, 13, 16, 20]. The current best general result towards Conjecture 1.1 is due to Lovász et
al. [14] in 2013, from the dual of their flow results.

Theorem 1.2 ([14]) Every planar graph of girth at least 6k is C2k+1-colorable.

For the cases of k ∈ {1, 2, 3}, better results are known. The case k = 1 of Conjecture 1.1
is Grötzsch’s 3-Coloring Theorem [8]. Proved in 1959, it stated that every triangle-free planar
graph is 3-colorable. The following results on the cases k = 2, 3 are obtained by Dvořák and
Postle [5], Cranston and Li [4], and Postle and Smith-Roberge [17], respectively.

Theorem 1.3 (i) ([4, 5]) Every planar graph of girth at least 10 is C5-colorable.

(ii) ([4, 17]) Every planar graph of girth at least 16 is C7-colorable.

Note that Theorems 1.2 and 1.3 are still valid if we replace girth conditions by odd-girth
conditions. Steinberg considered a different approach. Instead of forbidding small (odd) cycles,
he asked what if we forbid cycles of certain length. More specifically Steinberg conjectured
that every planar graph without cycles of length 4 or 5 is C3-colorable. Motivated by this
problem, the authors in [11] studied its generalization on Ck-coloring under similar Steinberg-
type conditions: for each odd integer k ≥ 3, what is the smallest number f(k) such that every
planar graph of girth k without cycles of length from k + 1 to f(k) is Ck-colorable? A known
result in [1] and the counterexamples of Steinberg’s Conjecture in [3] provide that f(3) ∈ {6, 7}.
It is proved in [11] that f(k) exists if and only if k is an odd prime, and for any prime p ≥ 5,
p2 − 5

2p + 3
2 ≤ f(p) ≤ 2p2 + 2p− 5. Furthermore, it is conjectured that f(p) ≤ p2 − 2p, which

states the following.

Conjecture 1.4 ([11]) For any prime p ≥ 5, every planar graph of girth p without cycles of
length from p+ 1 to p(p− 2) is Cp-colorable.

It is observed in [11] that Conjecture 1.4, if true, would imply Conjecture 1.1 for each prime
p = 2k + 1 ≥ 5. The first case p = 5 is very special, as it not only implies that planar graphs
of girth at least 8 are C5-colorable, but also implies the Five Color Theorem that every planar
graph is 5-colorable (see [11]).

The fractional coloring, as introduced in [10], is a well-known generalization of ordinary
coloring of graphs. For positive integers s and t with s ≥ t, a fractional (s : t)-coloring ϕ of a
graph G is a set coloring that assigns a t-element subset of {1, . . . , s} to each vertex such that
ϕ(u)∩ ϕ(v) = ∅ for each edge uv ∈ E(G). Equivalently, a graph is fractional (s : t)-colorable if
and only if it admits a homomorphism to the Kneser graph K(s, t) (or saying that it is K(s, t)-
colorable). Since the odd cycle C2k+1 is a subgraph of the Kneser graph K(2k + 1, k), we
have that every C2k+1-colorable graph is fractional (2k+1 : k)-colorable, but not vice versa. In
particular, fractional (2k+1 : k)-coloring can be viewed as a relaxation of C2k+1-coloring. When
k = 2, the Kneser graph K(5, 2) is the well-known Petersen graph, and Dvořák, Škrekovski,
and Valla [6] proved the fractional coloring version of Conjecture 1.1 in this case.
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Theorem 1.5 ([6]) Every planar graph of girth at least 8 is fractional (5 : 2)-colorable (or
equivalently, admits a homomorphism to the Petersen graph).

In [15], Naserasr proposed a stronger conjecture that every planar graph of odd-girth 2t+3
is fractional (2t+1 : t)-colorable (or equivalently, admits a homomorphism to the Kneser graph
K(2t+ 1, t)). A fractional coloring result related to Conjecture 1.4 is obtained in [11].

Theorem 1.6 ([11]) For any odd integer k ≥ 5, every planar graph of girth k without cycles
of length from k + 1 to � 22k

3 � is fractional (k : k−1
2 )-colorable.

Since p(p− 2) ≥ 22p
3 when p ≥ 11, Theorem 1.6 confirms the fractional coloring version of

Conjecture 1.4 for all prime p ≥ 11. The purpose of this paper is to prove the remaining cases
p = 5, 7 of the fractional coloring version of Conjecture 1.4.

Theorem 1.7 Every planar graph of girth 5 without cycles of length from 6 to 15 is fractional
(5 : 2)-colorable (or equivalently, admits a homomorphism to the Petersen graph).

Theorem 1.8 Every planar graph of girth 7 without cycles of length from 8 to 35 is fractional
(7 : 3)-colorable.

Corollary 1.9 The fractional coloring version of Conjecture 1.4 is true.

We remark that, other than Theorem 1.5 of Dvořák et al. [6], the fractional coloring version
of Conjecture 1.1 is still open for each k ≥ 3. Although Conjecture 1.4 implies Conjecture 1.1
for each prime p = 2k+1 ≥ 5 (see [11]), their fractional coloring versions seem not to have this
relation. Hence Theorem 1.7 does not imply and in turn is not implied by Theorem 1.5.

At the end of this section, we will give some definitions and notations that will be used
throughout this paper. In a graph G, a k-vertex is a vertex of degree k. A k-thread of length
k (k-thread for short) of G is a path uv1v2 · · · vkw such that vi is a 2-vertex for 1 ≤ i ≤ k.
The end vertices of the path are called the end vertices of the thread. A thread with end
vertices x, y is also called an (x, y)-thread. A k+-thread of G is a thread of length at least k.
A (k1, k2, . . . , kt)-thread Tx in G is a subgraph consisting of distinct k1-thread, k2-thread, . . .,
kt-thread which share a common end vertex x, where x is called the center of Tx. If z is a
2-vertex of an (x, y)-thread, then we say x and z are weakly adjacent. For a positive integer t,
let [t] = {1, 2, . . . , t}. Let ϕ be a fractional (2k + 1 : k)-coloring of G, and for any v ∈ V (G),
denote ϕ̄(v) = [2k+ 1] \ϕ(v). Fix a graph H and a vertex subset S of V (H). A precoloring ϕk

of S assigns colors in
(
[2k+1]

k

)
to vertices in S such that H[S] is properly fractional (2k+ 1 : k)-

colored. We say that H is (ϕk, S)-colorable if the precoloring ϕk of S can be extended to all
vertices of H to obtain a fractional (2k + 1 : k)-coloring.

The rest of this paper is organized as follows. Section 2 presents the proof of Theorem 1.7,
Section 3 is devoted to the proof of Theorem 1.8, and a few concluding remarks are given in
Section 4.

2 Fractional (5 : 2)-coloring of Planar Graphs

This section is aiming to give the proof of Theorem 1.7. We first study some graphs with
precoloring extensions in Subsection 2.1, serving for reducible configurations, and then present
the proof of Theorem 1.7 in Subsection 2.2 by a discharging method.
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2.1 Precoloring for Fractional (5 : 2)-coloring

We first show that certain precoloring of some vertices can be extended.

Lemma 2.1 Let P = v1v2 . . . vn be a path and ϕ2 be a precoloring of S = {v1, vn}.
(i) If n = 3, then P is (ϕ2, S)-colorable if and only if |ϕ2(v1) ∪ ϕ2(v3)| ≤ 3.
(ii) If n = 4, then P is (ϕ2, S)-colorable if and only if ϕ2(v1) 
= ϕ2(v4).

(iii) If n ≥ 5, then P is (ϕ2, S)-colorable.

Proof (i) This is obvious since we have enough colors in [5]\ (ϕ2(v1)∪ϕ2(v3)) to color v2, and
vice versa.

(ii) We select two available colors in ϕ̄2(v1) to color v2, say that v2 receives color set ϕ2(v2).
Now the coloring can be extended to v3 if and only if |ϕ2(v2) ∪ ϕ2(v4)| ≤ 3 by (i). This is
possible if and only if ϕ2(v1) 
= ϕ2(v4).

(iii) When n = 5, we have three colors not in ϕ2(v1), and it is always possible to color v2
with ϕ2(v2) ⊂ ϕ̄2(v1) such that ϕ2(v2) 
= ϕ2(v5). Thus P is (ϕ2, S)-colorable by (ii). For n ≥ 6,
we can arbitrarily color vertices vn−1, . . . , v5 first, and then extend this coloring to v2, v3, v4 as
before. �

By Lemma 2.1 (i) (ii), we have the following lemma.

Lemma 2.2 Let C be a 5-cycle u0u1u2u3u4u0 and ϕ2 be a precoloring of {u0, u2}. Then C

is (ϕ2, {u0, u2})-colorable if and only if |ϕ2(u0) ∪ ϕ2(u2)| = 3.

Lemma 2.3 Let H1 be a graph consisting of a path v0v1v2 . . . v6 and two edges v2w2, v4w4.
Given a precoloring ϕ2 of V (H1) \ {v3}, let φ2 be the restriction of ϕ2 on S = {v0, v6, w2, w4}.
Then H1 is (φ2, S)-colorable.

Proof Since |ϕ̄2(w2)| = |ϕ̄2(w4)| = 3, we have ϕ̄2(w2)∩ ϕ̄2(w4) 
= ∅. Let α ∈ ϕ̄2(w2)∩ ϕ̄2(w4).
Note that ϕ2(v0) 
= ϕ2(w2) and ϕ2(v6) 
= ϕ2(w4) by Lemma 2.1(ii). We select a color β such
that β ∈ ϕ2(v0) ∩ ϕ̄2(w2) if α /∈ ϕ2(v0), and β ∈ ϕ̄2(w2) \ {α} otherwise. Similarly, choose a
color γ such that γ ∈ ϕ2(v6) ∩ ϕ̄2(w4) if α /∈ ϕ2(v6), and γ ∈ ϕ̄2(w4) \ {α} otherwise. Define
φ2(v2) = {α, β} and φ2(v4) = {α, γ}. ThenH1 is (φ2, S∪{v2, v4})-colorable by Lemma 2.1(i). �

Lemma 2.4 (i) Let H1 be a graph consisting of a path v0v1v2v3, a path v0u1u2 and an
edge v0w1. Given a precoloring ϕ2 of V (H1) \ {v1, v2}, let φ2 be the restriction of ϕ2 on
S = {v3, u2, w1}. Then H1 is (φ2, S)-colorable.

(ii) Let H2 be a graph consisting of three paths v0v1v2, v0u1u2 and v0w1w2. Then for any
precoloring ϕ2 of S = {v2, u2, w2}, H2 is (ϕ2, S)-colorable.

Proof (i) Let α ∈ ϕ̄2(w1) \ ϕ2(v3). Choose β ∈ ϕ2(u2) ∩ ϕ̄2(w1) \ {α} if possible, and
β ∈ ϕ̄2(w1) \ {α} if ϕ2(u2)∩ ϕ̄2(w1) \ {α} = ∅. Define φ2(v0) = {α, β}. Then by Lemma 2.1 (i)
(ii) H1 is (φ2, S ∪ {v0})-colorable.

(ii) Since
∣∣
∣∣

(
ϕ̄2(v2)

2

)∣∣
∣∣ +

∣∣
∣∣

(
ϕ̄2(u2)

2

)∣∣
∣∣ +

∣∣
∣∣

(
ϕ̄2(w2)

2

)∣∣
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(
[5]
2

)∣∣
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there exists {α, β} ∈ (
[5]
2

)
which is not in

(
ϕ̄2(v2)

2

) ∪ (
ϕ̄2(u2)

2

) ∪ (
ϕ̄2(w2)

2

)
, and so define ϕ2(v0) =

{α, β}. Then H2 is (ϕ2, S ∪ {v0})-colorable by Lemma 2.1 (i). �
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Lemma 2.5 Let H be a graph consisting of two 5-cycles v0v1v2v3v4 and v0u1u2u3u4.

(i) For any precoloring ϕ2 of S = {v2, v3, u2, u3}, H is (ϕ2, S)-colorable.

(ii) Given a precoloring ϕ2 of V (H) \ {v1, v2}, let φ2 be the restriction of ϕ2 on S =
{v3, u1, u2, u3}. Then H is (φ2, S)-colorable.

Proof (i) By Lemma 2.1 (i), we only need to color v0 with ϕ2(v0) such that |ϕ2(v0)∩ϕ2(x)| = 1
for each x ∈ {v2, v3, u2, u3}. Clearly, we have (ϕ2(v2) ∪ ϕ2(v3)) ∩ ϕ2(u2) 
= ∅, w.l.o.g., let
α ∈ ϕ2(v2)∩ϕ2(u2). If ϕ2(v3)∩ϕ2(u3) 
= ∅, then we choose β ∈ ϕ2(v3)∩ϕ2(u3), and set ϕ2(v0) =
{α, β}, we are done. Otherwise, ϕ2(v3) ∩ ϕ3(u3) = ∅ and ϕ2(v3) ∪ ϕ2(u3) = [5] \ {α}. Now we
have ϕ2(v2) ∩ ϕ2(u3) = ϕ2(v2) \ {α}, say ϕ2(v2) \ {α} = {α′}. Moreover, ϕ2(v3) ∩ ϕ2(u2) 
= ∅,
and we let β ∈ ϕ2(v3) ∩ ϕ2(u2). Then define ϕ2(v0) = {α′, β} as desired.

(ii) We may assume that ϕ2(v3) = ϕ2(v0); otherwise H is (ϕ2, V (H) \ {v1, v2})-colorable by
Lemma 2.1(ii), and thus is (φ2, S)-colorable as well. By Lemma 2.2, |ϕ2(v0)∩ϕ2(u3)| = 1. Let
α ∈ ϕ2(v0)∩ϕ2(u3) and β ∈ ϕ̄2(u1)\ϕ2(u3). Define φ2(v0) = {α, β}. Then |φ2(v0)∩φ2(v3)| = 1,
and |φ2(v0) ∩ φ2(u3)| = 1. Thus, by Lemma 2.1(i) and Lemma 2.2, H is (φ2, S)-colorable. �

Lemma 2.6 Let H be a graph consisting of a 5-cycle v0v1v2v3v4v0, a 5-cycle u0u1u2u3u4u0,
and an edge v0u0. Given a precoloring ϕ2 of V (H) \ {v0, v1, v4}, let φ2 be the restriction of ϕ2

on S = {v2, v3, u2, u3, u4}. Then H is (φ2, S)-colorable.

Proof By Lemma 2.2, we have |ϕ2(u2)∩ϕ2(u4)| = 1. Let α ∈ ϕ2(u2)\ϕ2(u4). If α /∈ ϕ2(v2)∪
ϕ2(v3), then we choose β ∈ ϕ̄2(u4)\ϕ2(u2), and then select a color γ1 ∈ ϕ2(v2)\{β} and a color
γ2 ∈ ϕ2(v3) \ {β}. Define φ2(v0) = {γ1, γ2} and φ2(u0) = {α, β}. Hence H is (φ2, S ∪{v0, u0})-
colorable by Lemma 2.1(i). Assume instead that α ∈ ϕ2(v2) ∪ ϕ2(v3), w.l.o.g., say α ∈ ϕ2(v2).
Then we have α /∈ ϕ2(v3). Let γ1 ∈ ϕ2(v2) \ {α}. Choose β ∈ ϕ̄2(u4) \ (ϕ2(u2) ∪ {γ1}), and
let γ2 ∈ ϕ2(v3) \ {β}. Define φ2(v0) = {γ1, γ2} and φ2(u0) = {α, β}. This shows that H is
(φ2, S ∪ {v0, u0})-colorable by Lemma 2.1 (i) as well. �

Lemma 2.7 (i) Let H1 be a graph consisting of a 5-cycle v0v1v2v3v4v0 and an edge v0u1.
Given a precoloring ϕ2 of S = {v2, v3, u1}, if ϕ2(u1) 
= ϕ2(v2) and ϕ2(u1) 
= ϕ2(v3), then H1

is (ϕ2, S)-colorable.

(ii) Let H2 be a graph consisting of a 5-cycle v0v1v2v3v4v0 and a path v0u1u2. Given a
precoloring ϕ2 of V (H2) \ {u1}, let φ2 be the restriction of ϕ2 on S = {v1, v2, v3, u2}. If
φ2(u2) 
= φ2(v1), then H2 is (φ2, S)-colorable.

Proof (i) Since ϕ2(u1) 
= ϕ2(v2) and ϕ2(u1) 
= ϕ2(v3), we can choose α ∈ ϕ2(v2) \ϕ2(u1) and
β ∈ ϕ2(v3) \ ϕ2(u1). Define ϕ2(v0) = {α, β}. Then H1 is (ϕ2, S ∪ {v0})-colorable by Lemma
2.1 (i).

(ii) As ϕ2 provides a fractional (5 : 2)-coloring of 5-cycle v0v1v2v3v4, we have |ϕ2(v1) ∪
ϕ2(v3)| = 3 by Lemma 2.2. Let α ∈ ϕ̄2(v1) ∩ ϕ2(v3). If α ∈ ϕ2(u2), we choose a color
β ∈ ϕ̄2(v1) \ {α} and define φ2(v0) = {α, β}. If α /∈ ϕ2(u2), we can choose β ∈ ϕ2(u2)∩ ϕ̄2(v1)
as ϕ2(u2) 
= ϕ2(v1), and then define φ2(v0) = {α, β}. In any case, H2 is (φ2, S∪{v0})-colorable
by Lemma 2.1 (i). �
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2.2 Proof of Theorem 1.7

In this subsection, we shall prove Theorem 1.7 by analyzing the structure of the potential
minimal counterexample and proceeding with a discharging proof. In the rest of this section,
we always let G be a counterexample to Theorem 1.7 such that |V (G)| + |E(G)| is minimized.

2.2.1 Subgraph Structures of a Minimum Counterexample

We start with some basic properties of the minimal counterexample G.

Claim 2.1 G is 2-connected and particularly δ(G) ≥ 2.

Proof Clearly, G is connected. If G is not 2-connected and contains a cut vertex v, then
there exist proper induced subgraphs G1 and G2 of G such that E(G) = E(G1) ∪ E(G2) and
V (G1) ∩ V (G2) = {v}. By the minimality of the counterexample, G1 has a (5 : 2)-coloring ϕ
and G2 has a (5 : 2)-coloring ψ. Exchange the colors if necessarily such that ϕ(v) = ψ(v), then
ϕ and ψ combine to become a fractional (5 : 2)-coloring of G, which is a contradiction. �

v0 v1 v2 v3 v4 v5 v6

w2 w4

(a) an AL-path v0v1v2 . . . v6

v0 u0

v1v2

v3 v4

u1 u2

u3u4

(b) a (1, 1; 1, 0)-edge v0u0

x x

(c) a (1, 1; 1, 1)-vertex x (d) a (2, 1; 1, 0)-vertex x

Figure 1 An AL-path, a (1, 1; 1, 0)-edge, a (1, 1; 1, 1)-vertex and a (2, 1; 1, 0)-vertex

A subgraph of G consists of a path v0v1v2 . . . v6 and two edges v2w2, v4w4 with dG(v1) =
dG(v3) = dG(v5) = 2 and dG(v2) = dG(v4) = 3 is called an alternating-path (AL-path for short).
An edge v0u0 is called a (1, 1; 1, 0)-edge if v0 and u0 are respectively in vertex-disjoint 5-cycles
v0v1v2v3v4v0 and u0u1u2u3u4u0 with dG(v0) = dG(u0) = 3 and dG(v1) = dG(v4) = dG(u1) = 2,
as in Lemma 2.6. A 4-vertex is called a (1, 1; 1, 1)-vertex if it is a center of a (1, 1, 1, 1)-thread
and is incident with two edge-disjoint 5-cycles, as in Lemma 2.5 (i). Similarly, a 4-vertex is
called a (2, 1; 1, 0)-vertex if it is a center of a (2, 1, 1, 0)-thread and is incident with two edge-
disjoint 5-cycles, one consists of a 2-thread and a 1-thread, and the other contains a 1-thread,
as in Lemma 2.5 (ii). See Figure 1 for an illustration, where the degrees of the black solid
vertices in G equal their degrees in the figure.

By Lemmas 2.1–2.6, we get several reducible structures which do not appear in the minimal
counterexample G.

Claim 2.2 G contains none of the following configurations:
(i) a 3+-thread,
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(ii) an AL-path,
(iii) a (1, 1, 1)-thread or a (2, 1, 0)-thread,
(iv) a (1, 1; 1, 1)-vertex or a (2, 1; 1, 0)-vertex,
(v) a (1, 1; 1, 0)-edge.

Proof Suppose for a contradiction that G contains one of the above configurations H. Let S
be the vertex set defined as in one of Lemmas 2.1–2.6. We obtain a subgraph G1 of G by deleting
the vertex set V (H) \ S. By the minimality of G, G1 admits a fractional (5 : 2)-coloring ϕ,
where each vertex in S receives a color set with certain restrictions. Applying Lemmas 2.1–2.6,
H is (ϕ, S)-colorable, and so we extend this coloring ϕ to become a fractional (5 : 2)-coloring
of G, a contradiction. �

2.2.2 Exploring the Subgraph G′

Next, unlike some standard methods, we explore further structure of G from its subgraph G′.
From G, we obtain a subgraph G′ as follows.
(i) If there exist two (or more) adjacent 2-vertices in a 5-cycle of G, then we delete all those

2-vertices.
(ii) If there exist some 2-vertices in a 5-cycle of G but no adjacent 2-vertices, then we delete

a 2-vertex in the 5-cycle (arbitrarily).
Clearly, the obtained graph G′ is of girth at least 5 and contains no cycles of length from

6 to 15, and moreover each 5-cycle of G′ contains no 2-vertices. It is easy to see that G′ has
minimal degree at least 2 by its construction. Furthermore, in each step of constructing G′ we
only delete either a single 2-vertex or two adjacent 2-vertices by Claim 2.2 (i).

Claim 2.3 G′ contains no 3+-thread.

Proof Suppose, for a contradiction, that xabcy is a path of G′ with dG′(a) = dG′(b) = dG′(c) =
2. Since G contains no adjacent C5, dG(b) ≤ 4. We divide our discussion into three cases below.

If dG(b) = 4, then there exist a 5-cycle inG containing ab and another 5-cycle inG containing
bc. Let bv1v2v3ab and bu1u2u3cb be the corresponding 5-cycles. Since v1 is deleted in G′, we
have that either v1, v2 are two adjacent 2-vertices deleted in G′, or v1 is a single deleted 2-vertex.
In any case, we have dG(a) = dG′(a) = 2. By symmetry, we also obtain that dG(c) = dG′(c) = 2.
Hence b is a (1, 1; 1, 1)-vertex in G, a contradiction to Claim 2.2 (iv).

If dG(b) = 3, w.l.o.g., we may assume that ab is contained in a 5-cycle bv1v2v3ab in G. Then
dG(a) = dG′(a) = 2, and so v1 is a single deleted 2-vertex by Claim 2.2 (iii). Moreover, we
also have dG(c) 
= 2 since G contains no (1, 1, 1)-thread by Claim 2.2 (iii). Thus dG(c) = 3
and cy is contained in a 5-cycle cyz1z2z3c, where z3 is a deleted 2-vertex. Now the edge bc is a
(1, 1; 1, 0)-edge, a contradiction to Claim 2.2 (v).

If dG(b) = 2, since G has no 3+-thread by Claim 2.2 (i), one of a and c has degree at least 3,
say dG(a) ≥ 3. If dG(a) = 4, then a is incident with two 5-cycles, where a, b, c are contained in a
5-cycle abcz1z2a of G and z2 is a deleted 2-vertex. By the construction of G′, we have dG(c) ≥ 3,
and thus y 
= z1 and z1 is also a deleted 2-vertex as dG′(c) = 2. Thus a is a (2, 1; 1, 0)-vertex,
a contradiction to Claim 2.2 (iv). So we assume dG(a) = 3 in the following. Since G contains
no (2, 1, 0)-thread by Claim 2.2 (iii), we must have dG(c) ≥ 3, and so dG(c) = 3 with a similar
argument as above. Since G contains no (2, 1, 0)-thread, then a, b, and c cannot be contained
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in the same C5. Now let av1v2v3xa, cu1u2u3yc be the corresponding 5-cycles containing ax, cy,
respectively. Hence we have dG(v1) = dG(u1) = dG(b) = 2 and dG(a) = dG(c) = 3. This results
in an AL-path in G, contradicting to Claim 2.2 (ii). This proves Claim 2.3. �

The key of the proof is the following claim to rule out (2, 2, 2)-threads in G′.

Claim 2.4 G′ contains no (2, 2, 2)-thread.

Proof Suppose to the contrary that there is a (2, 2, 2)-thread consisting of paths vx1x2, vy1y2,
vz1z2, where dG′(v) = 3 and dG′(xi) = dG′(yi) = dG′(zi) = 2 for 1 ≤ i ≤ 2. By the construction
of G′, x2y2, x2z2, y2z2 /∈ E(G′). We first show the following fact.

Subclaim 2.4.1 dG(v) = dG′(v) = 3.

Proof of Subclaim 2.4.1 If dG(v) ≥ 4, then there exist deleted 2-vertices in G, which corresponds
to a 5-cycle containing v. Since either a single 2-vertex or two adjacent 2-vertices are deleted
in constructing G′, we may, w.l.o.g., let vu1u2x2x1v be such a 5-cycle, where u1 is a deleted
2-vertex. If u2 is not a deleted 2-vertex of G, then both x1 and x2 are 2-vertices of G, which
are contained in the 5-cycle vu1u2x2x1v. According to the construction rules of G′, we should
delete 2-vertices x1, x2 and keep the vertex u1 in G′. This is a contradiction. So we must have
that both u1 and u2 are deleted 2-vertices. In this case, dG(x1) = dG′(x1) = 2 and x2 is incident
with a 1-thread x2x1v and a 2-thread x2u2u1v. By Claim 2.2 (iii), we have dG(x2) > 3, and
so dG(x2) = 4, which implies that x2 is contained in another 5-cycle of G, say x2w1w2w3w4x2,
where w1 is a deleted 2-vertex. Hence x2 is a (2, 1; 1, 0)-vertex, a contradiction to Claim 2.2
(iv).

Next we obtain further structures around the vertex v.

Subclaim 2.4.2 The vertex v is not contained in any 5-cycle of G.

Proof of Subclaim 2.4.2 If v is contained in a 5-cycle of G, we shall distinguish two cases
according to the distribution of the 5-cycle.

Case 1 Assume that v is contained in a 5-cycle of G which contains one deleted 2-vertex.
W.l.o.g., we may assume this 5-cycle to be vy1uz2z1v, where u is the deleted 2-vertex. Clearly,
there is no 5-cycle of G containing vx1 since G contains no adjacent 5-cycles and dG(v) = 3
by Subclaim 2.4.1, and so we have dG(x1) ≤ 3 and dG(x2) ≤ 3. If dG(x1) = 3, then x1x2

is contained in a 5-cycle x1u1u2u3x2x1, where u1 is a deleted 2-vertex. Hence u1, x2, z1 are
all 2-vertices of G and dG(v) = dG(x1) = 3. Thus vx1 is a (1, 1; 1, 0)-edge, contradicting to
Claim 2.2 (v). Otherwise, we have dG(x1) = 2. Since v is not in a (2, 1, 0)-thread by Claim
2.2 (iii), we have dG(x2) > 2, and so dG(x2) = 3. This implies that x2 is contained in a
5-cycle x2u1u2u3u4x2, where u1 is a deleted 2-vertex. Hence z2z1vx1x2u1u2 is an AL-path, a
contradiction to Claim 2.2 (ii).

Case 2 Assume instead that v is contained in a 5-cycle of G which contains two adjacent
2-vertices deleted. W.l.o.g., we assume this 5-cycle to be vy1uwz1v, where u and w are deleted
2-vertices. By the minimality of G, G − {v, y1, u, w, z1} has a fractional (5 : 2)-coloring ϕ. If
dG(z1) = 4, then z1z2 is in a 5-cycle z1a1a2a3z2z1, where z2 and a1 are 2-vertices of G. We
erase the color of z2, a1, and let T1 = {{α, β} : α ∈ ϕ(a2), β ∈ ϕ(a3)}. If dG(z1) = 3, then by
Claim 2.2 (iii), we have z2 is in a 5-cycle z2a1a2a3a4z2 where a1 is a deleted 2-vertex. We erase
the color of z2, a1, and define T1 = {{α, β} : α ∈ ϕ(a4), β ∈ ϕ̄(a4) \ ϕ(a2)}. Note that we have
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|T1| ≥ 4 in any case, and T1 contains a subset of type {{α1, β1}, {α1, β2}, {α2, β1}, {α2, β2}},
where α1, α2, β1, β2 are distinct. Moreover, any color of z1 in T1 can extend to the erased vertices
z2 and a1 by Lemma 2.1. Similarly, we can define a set T2 according to the structure of y1 such
that T2 contains a subset of type {{γ1, θ1}, {γ1, θ2}, {γ2, θ1}, {γ2, θ2}}, where γ1, γ2, θ1, θ2 are
distinct.

If dG(x1) = 2, then either dG(x2) = 2 or dG(x2) = 3 where x2 is contained in a 5-cycle
with some 2-vertices deleted. Let x3 be the neighbor of x2 in G′ other than x1. In the coloring
ϕ, we erase the color of x1, x2 and the deleted 2-vertex in the 5-cycle containing x2 (if exists).
Set T3 =

(
[5]
2

) \ {ϕ(x3)}. By Lemma 2.4 (ii) or Claim 2.2 (ii), any color of v in T3 can be
extended to x1, x2 and the deleted 2-vertex. If dG(x1) = 3, then x1 is contained in a 5-cycle
x1u1u2u3x2x1, where u1 is a deleted 2-vertex. In the coloring ϕ, we erase the color of u1, x1, x2

and set T3 =
(
[5]
2

) \ {ϕ(u2), ϕ(u3)}. Then any color of v in T3 can be extended to u1, x1, x2 by
Lemma 2.4 (i). Since ϕ(u2) ∩ ϕ(u3) = ∅, we have that T3 contains a subset of size 8 with type
(
[5]
2

) \ {{η1, η2}, {η3, η4}}, where η1, η2, η3, η4 are distinct.
Now it suffices to color z1, y1 and v such that ϕ(z1) ∈ T1, ϕ(y1) ∈ T2, ϕ(v) ∈ T3, and |ϕ(z1)∩

ϕ(y1)| = 1. Then by Lemmas 2.1 and 2.4, ϕ can be extended to G. Recall that α1, α2, β1, β2

are distinct, and γ1, γ2, θ1, θ2 are distinct. In addition, we have either {α1, β1} ⊂ {γ1, γ2, θ1, θ2}
or {α2, β2} ⊂ {γ1, γ2, θ1, θ2}. By symmetry, we may assume that {α1, β1} ⊂ {γ1, γ2, θ1, θ2}
and α1 = γ1. Since η1, η2, η3, η4 are distinct, |{β1, β2} ∩ {η1, η2, η3, η4}| ≥ 1, say β1 = η1.
If |{α1, β1, θ1, θ2} ∩ {η3, η4}| ≥ 1, let θ∗ ∈ {θ1, θ2} ∩ {η3, η4} if |{θ1, θ2} ∩ {η3, η4}| ≥ 1, and
let θ∗ ∈ {θ1, θ2} otherwise. Define ϕ(z1) = {α1, β1}, ϕ(y1) = {α1, θ

∗}, and define ϕ(v) =
[5] \ (ϕ(y1) ∪ ϕ(z1)). Note that |ϕ(v) ∩ {η1, η2}| ≤ 1 and |ϕ(v) ∩ {η3, η4}| ≤ 1. Then we have
ϕ(v) ∈ T3, ϕ(y1) ∈ T2 and ϕ(z1) ∈ T1 as desired. Now we assume |{α1, β1, θ1, θ2}∩{η3, η4}| = 0,
then β1 ∈ {θ1, θ2}, say β1 = θ1. Note that {α1, β1, θ2, η3, η4} = [5], and γ2 /∈ {α1, β1, θ2} as
α1 = γ1, γ2, β1 = θ1, θ2 are all distinct. So γ2 ∈ {η3, η4}. Define ϕ(z1) = {α1, β1}, ϕ(y1) =
{γ2, β1}, and define ϕ(v) = [5] \ (ϕ(y1) ∪ ϕ(z1)). Then we have ϕ(v) ∈ T3, ϕ(y1) ∈ T2 and
ϕ(z1) ∈ T1 as desired.

Then we are able to complete the proof of Claim 2.4.

Subclaim 2.4.3 Such a (2, 2, 2)-thread with center vertex v does not exist in G′, a contra-
diction. Hence Claim 2.4 holds.

Proof of Subclaim 2.4.3 Let ϕ be a fractional (5 : 2)-coloring of G− v. We shall erase the color
set of some vertices and then extend the coloring ϕ to G. By Subclaim 2.4.2 v is not contained
in any 5-cycle of G, and so dG(x1) ≤ 3, dG(y1) ≤ 3 and dG(z1) ≤ 3. If dG(x1) = 2, then either
dG(x2) = 2 or dG(x2) = dG′(x2) + 1 = 3 where x2 is contained in a 5-cycle with some 2-vertex
deleted. Let x3 be the neighbor of x2 in G′ other than x1. In the coloring ϕ, we erase the color
of x1, x2 and the deleted 2-vertex in the 5-cycle containing x2 (if exists). Set L1 = {ϕ(x3)}.
By Lemma 2.4 (ii) or Claim 2.2 (ii), any color of v not in L1 can be extended to x1, x2 and the
deleted 2-vertex. If dG(x1) = 3, then x1 is contained in a 5-cycle x1u1u2u3x2x1, where u1 is a
deleted 2-vertex. In the coloring ϕ, we erase the color of u1, x1, x2 and set L1 = {ϕ(u2), ϕ(u3)}.
Then any color of v not in L1 can be extended to u1, x1, x2 by Lemma 2.4 (i). Similarly, no
matter dG(y1) = 2 or dG(y1) = 3, we can erase the color of certain vertices and define a list
L2 of cardinality 1 or 2 such that any color of v not in L2 can be extended to the uncolored
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vertices by Lemma 2.4 (i) and (ii). Similarly, there is a corresponding list L3 for vz1z2. Since
|L1 ∪ L2 ∪ L3| ≤ 6 < 10, there is an available choice in

(
[5]
2

) \ (L1 ∪ L2 ∪ L3) to color v, which
extends the coloring to all the erased vertices. This provides a fractional (5 : 2)-coloring of G,
a contradiction. �

2.2.3 Discharging

Now we are ready to complete the proof by a discharging method on G′. Note that G′ is clearly
planar since it is a subgraph of G. In the following, we always assume G′ is embedded on the
plane. Let F (G′) be the set of faces of G′. From Euler Formula, we have

∑

v∈V (G′)

(
3
2
dG′(v) − 5

)
+

∑

f∈F (G′)

(dG′(f) − 5) = −10. (2.1)

Assign an initial charge ch0(v) = 3
2dG′(v) − 5 for each v ∈ V (G′), and ch0(f) = dG′(f) − 5

for each f ∈ F (G′). Hence the total charge is −10 by the equation above.
We redistribute the charges according to the following rules.
(R1) Each 3+-vertex sends charge 1 to each of its weakly adjacent 2-vertices.
(R2) Each 16+-face sends charge 11

16 to its incident vertices.
(R3) After (R2), each 2-vertex sends its charge equally to its weakly adjacent 3+-vertices.
Let ch denote the charge assignment after performing the charge redistribution using the

rules (R1), (R2), and (R3).

Claim 2.5 ch(f) ≥ 0 for each f ∈ F (G′).

Proof First we assume dG′(f) = 5. Then ch(f) = ch0(f) = dG′(f) − 5 = 0. Now we assume
dG′(f) ≥ 16 as G′ contains no cycles of length from 6 to 15. By (R2), f sends charge 11

16 to
each incident vertices, and then

ch(f) = ch0(f) − 11
16
dG′(f) =

5
16
dG′(f) − 5 ≥ 0. �

Claim 2.6 ch(v) ≥ 0 for each v ∈ V (G′).

Proof Recall that δ(G′) ≥ 2 by its construction. First we assume dG′(v) = 2. Then v is
weakly adjacent to two 3+-vertex by Claim 2.3, and thus ch(v) = −2 + 2 × 1 = 0 by (R1).

Now we assume dG′(v) ≥ 3. Let p(v) be the number of 2-vertices weakly adjacent to v, and
let t(v) be the number of 5-cycles incident with v.

Notice that there is no 2-vertex in a 5-face of G′ by its construction. Since G′ has no
3+-thread by Claim 2.3, we have

p(v) ≤ 2(dG′(v) − 2t(v)). (2.2)

Let p(v, f) be the number of 2-vertices weakly adjacent to v in f . Then
∑

16+-facef�v

p(v, f) = 2p(v). (2.3)

By (R1), v sends charge p(v) to its weakly adjacent 2-vertices. By (R2), v receives charge
11
16 from each incident 16+-face and receives charge p(v, f) × 11

16 × 1
2 from its weakly adjacent

2-vertices. Hence for each 3+-vertex v ∈ V (G′), it follows from Eqs. (2.2) and (2.3) that

ch(v) =
3
2
dG′(v) − 5 − p(v) +

∑

16+-facef�v

(11
16

+
p(v, f)

2
· 11
16

)
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=
3
2
dG′(v) − 5 − p(v) +

11
16

(dG′(v) − t(v)) +
11
16
p(v)

=
35
16
dG′(v) − 5 − 11

16
t(v) − 5

16
p(v). (2.4)

If v is a 4+-vertex, by Eqs. (2.2) and (2.4), we have

ch(v) =
35
16
dG′(v) − 5 − 11

16
t(v) − 5

16
p(v)

≥ 35
16
dG′(v) − 5 − 11

16
t(v) − 5

16
· 2(dG′(v) − 2t(v))

=
25
16
dG′(v) − 5 +

9
16
t(v)

≥ 25
16

· 4 − 5 +
9
16
t(v)

=
5
4

+
9
16
t(v) > 0.

If v is a 3-vertex, then t(v) ≤ 1 as G contains no C4. When t(v) = 1, we have p(v) ≤ 2 by
Claim 2.3, and so by Eq. (2.4),

ch(v) =
35
16
dG′(v) − 5 − 11

16
t(v) − 5

16
p(v) ≥ 35

16
· 3 − 5 − 11

16
− 5

16
· 2 =

4
16

> 0.

When t(v) = 0, we have p(v) ≤ 5 since G′ contains no (2, 2, 2)-thread by Claim 2.4, and hence

ch(v) ≥ 35
16

· 3 − 5 − 5
16

· 5 = 0.

Therefore, all the vertices of G′ receive nonnegative final charge. �
By the fact that the total amount of charge does not change by its redistribution, combining

(2.1) and Claims 2.5 and 2.6, we have

−10 =
∑

v∈V (G′)

ch0(v) +
∑

f∈F (G′)

ch0(f) =
∑

v∈V (G′)

ch(v) +
∑

f∈F (G′)

ch(f) ≥ 0,

a contradiction. This contradiction completes the proof of Theorem 1.7.

3 Fractional (7 : 3)-coloring of Planar Graphs

This section is devoted to proving Theorem 1.8. We first present some reducible configurations
under precoloring in Subsection 3.1, and then use a discharging method to complete the proof
in Subsection 3.2.

3.1 Precoloring for Fractional (7 : 3)-coloring

At first, we show that certain precoloring of some vertices can be extended.

Lemma 3.1 Let P = v1v2 · · · vn be a path and ϕ3 be a precoloring of S = {v1, vn}. Denote
b = |ϕ3(v1) ∩ ϕ3(vn)|.

(i) If n = 3, then P is (ϕ3, S)-colorable if and only if b ≥ 2.
(ii) If n = 4, then P is (ϕ3, S)-colorable if and only if b ≤ 1.
(iii) If n = 5, then P is (ϕ3, S)-colorable if and only if b ≥ 1.
(iv) If n = 6, then P is (ϕ3, S)-colorable if and only if b ≤ 2.
(v) If n ≥ 7, then P is (ϕ3, S)-colorable.
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Proof (i) This is obvious since there are enough colors in [7] \ (ϕ3(v1) ∪ ϕ3(v3)) to color v2,
and vice versa.

(ii) We choose three available colors in ϕ̄3(v1) to color v2, and let ϕ3(v2) ⊂ ϕ̄3(v1) be the
color set of v2. Now the coloring can be extended to v3 if and only if |ϕ3(v2) ∩ ϕ3(v4)| ≥ 2
by (i). Meanwhile, this is possible if and only if |ϕ̄3(v1) ∩ ϕ3(v4)| ≥ 2, which is equivalent to
b = |ϕ3(v1) ∩ ϕ3(v4)| ≤ 1.

The proofs of (iii), (iv), and (v) are similar to (ii). We select a color set ϕ3(v2) ⊂ ϕ̄3(v1) to
color v2. Then we are trying to color all vertices of path v3v4 . . . vn−1 by previous facts. For n =
5, there exists ϕ3(v2) ⊂ ϕ̄3(v1) with |ϕ3(v2)∩ϕ3(v5)| ≤ 1 if and only if |ϕ3(v1)∩ϕ3(v5)| ≥ 1. For
n = 6, there exists ϕ3(v2) ⊂ ϕ̄3(v1) with |ϕ3(v2)∩ϕ3(v6)| ≥ 1 if and only if |ϕ3(v1)∩ϕ3(v6)| ≤ 2.
For n = 7, there exists ϕ3(v2) ⊂ ϕ̄3(v1) with |ϕ3(v2) ∩ ϕ3(v7)| ≤ 2 for any possible color set
ϕ3(v1) since ϕ̄3(v1) \ ϕ3(v7) 
= ∅. Thus (iii), (iv), and (v) are all true. �

By Lemma 3.1 (i)–(iv), we immediately have the following corollary on precoloring of 7-
cycle.

Lemma 3.2 Let C = u0u1u2u3u4u5u6u0 be a 7-cycle.
(i) For a precoloring ϕ3 of {u0, u2}, C is (ϕ3, {u0, u2})-colorable if and only if |ϕ3(u0) ∩

ϕ3(u2)| = 2.
(ii) For a precoloring ϕ3 of {u0, u3}, C is (ϕ, {u0, u3})-colorable if and only if |ϕ3(u0) ∩

ϕ3(u3)| = 1.

In a graph G, a d-C7-replacement operation on a given edge e = xy ∈ E(G) is to replace
the edge e with a 7-cycle C7 = v0v1 . . . v6v0 by identifying x with v0 and identifying y with
vd. When d is not explicitly stated, we just call it a C7-replacement operation on the edge
e ∈ E(G). A necklace in G is a subgraph obtained from a thread by applying C7-replacement
operations on some edges. A vertex z is an end vertex of the necklace if and only if z is an end
vertex of the thread. A necklace with end vertices x, y is also called an (x, y)-necklace, denoted
by N(x, y).

Lemma 3.3 Let N(x, y) be a necklace with a precoloring ϕ3 of {x, y}. Suppose that the
distance between x and y is d(x, y) = t.

(i) If t ≤ 3 and |ϕ3(x) ∩ ϕ3(y)| = 5
4 + (−1)t · 7−2t

4 , then N(x, y) is (ϕ3, {x, y})-colorable.
(ii) If t = 4 and 1 ≤ |ϕ3(x) ∩ ϕ3(y)| ≤ 2, then N(x, y) is (ϕ3, {x, y})-colorable.
(iii) If t = 5 and |ϕ3(x) ∩ ϕ3(y)| ≤ 2, then N(x, y) is (ϕ3, {x, y})-colorable.
(iv) If t ≥ 6, then N(x, y) is (ϕ3, {x, y})-colorable.

Proof (i) The statement is clear when t = 1, 2. So we assume t = 3 and let xx1y1y be
a shortest (x, y)-path in the necklace N(x, y). If x and y are in the same 7-cycle, then the
statement follows by Lemma 3.2 (ii). Otherwise, we may assume, w.l.o.g., that x1y1 and y1y

are not in a common 7-cycle. So it is enough to color y1 with ϕ3(y1) such that ϕ3(y1)∩ϕ3(y) = ∅
and |ϕ3(y1) ∩ ϕ3(x)| = 2. Then by the case t = 2 we can extend this coloring ϕ3 to become a
fractional (7 : 3)-coloring of N(x, y). To construct such a coloring ϕ3(y1), we select two colors
α, β ∈ ϕ3(x)\ϕ3(y) and another color γ ∈ [7]\(ϕ3(x)∪ϕ3(y)), and then define ϕ3(y1) = {α, β, γ}
as desired.

(ii) Let xx1zy1y be a shortest path in the necklace N(x, y). Then there exist two consecutive
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edges in the path xx1zy1y that does not belong to a common 7-cycle. By symmetry, we have
two cases as follows. If x1z and zy1 are not in a common 7-cycle, then it suffices to color z
with ϕ3(z) such that |ϕ3(x) ∩ ϕ3(z)| = |ϕ3(z) ∩ ϕ3(y)| = 2. With an application of (i), this
coloring ϕ3 can be extended to a fractional (7 : 3)-coloring of N(x, y). To this end, we select
colors α ∈ ϕ3(x) ∩ ϕ3(y), β ∈ ϕ3(x) \ ϕ3(y), and γ ∈ ϕ3(y) \ ϕ3(x) to set ϕ3(z) = {α, β, γ} as
required. Assume instead that zy1 and y1y are not in a common 7-cycle. Hence, by applying
(i), it suffices to color y1 with ϕ3(y1) such that |ϕ3(x) ∩ ϕ3(y1)| = 1 and |ϕ3(y1) ∩ ϕ3(y)| = 0.
Now we choose two colors α, β ∈ [7] \ (ϕ3(x) ∪ ϕ3(y)) and a color γ ∈ ϕ3(x) \ ϕ3(y) to define
ϕ3(y1) = {α, β, γ} as required.

(iii) Let xx1z1z2y1y be a shortest path of length 5 in the necklace N(x, y). By symmetry,
in the path xx1z1z2y1y there are two cases for the existence of two consecutive edges which
do not belong to a common 7-cycle. Assume first that z1z2 and z2y1 are not in a common
7-cycle. By applying (i), it is enough to color z2 with ϕ3(z2) such that |ϕ3(x)∩ϕ3(z2)| = 1 and
|ϕ3(z2)∩ϕ3(y)| = 2. So if 1 ≤ |ϕ3(x)∩ϕ3(y)| ≤ 2 we choose α ∈ ϕ3(x)∩ϕ3(y), β ∈ ϕ3(y)\ϕ3(x),
and γ ∈ [7] \ (ϕ3(x) ∪ ϕ3(y)); if |ϕ3(x) ∩ ϕ3(y)| = 0 we choose α, β ∈ ϕ3(y) and γ ∈ ϕ3(x).
Hence we can define ϕ3(z2) = {α, β, γ} as desired. Now assume instead that z2y1 and y1y

are not in a common 7-cycle. By applying (i) and (ii), it suffices to color y1 with ϕ3(y1) such
that 1 ≤ |ϕ3(x) ∩ ϕ3(y1)| ≤ 2 and |ϕ3(y1) ∩ ϕ3(y)| = 0. If 1 ≤ |ϕ3(x) ∩ ϕ3(y)| ≤ 2 we choose
α ∈ ϕ3(x) \ϕ3(y) and β, γ ∈ [7] \ (ϕ3(x)∪ϕ3(y)); if |ϕ3(x)∩ϕ3(y)| = 0 we choose α, β ∈ ϕ3(x)
and γ ∈ [7] \ (ϕ3(x) ∪ ϕ3(y)). Thus we can define ϕ3(y1) = {α, β, γ} as required. This proves
(iii).

(iv) Let x1 be the first cut-vertex of N(x, y) in the shortest (x, y)-path. That is, the subpath
from x to x1 either lies in a common 7-cycle or is an edge xx1. We divide our discussion according
to the distance d(x, x1) ∈ {1, 2, 3}. If d(x, x1) = 1, then d(x1, y) ≥ 5. By induction on t and by
applying (iii), it is enough to color x1 such that ϕ3(x1) ⊂ ϕ̄3(x) and |ϕ3(x1)∩ϕ3(y)| ≤ 2. This
can be done since we can select a color α ∈ ϕ̄3(x)\ϕ3(y) and other two colors β, γ ∈ ϕ̄3(x)\{α}
to formulate ϕ3(x1) = {α, β, γ} as required. If d(x, x1) = 2, then d(x1, y) ≥ 4. By induction
on t and by applying (ii) and (iii), it suffices to color x1 such that |ϕ3(x1) ∩ ϕ3(x)| = 2 and
1 ≤ |ϕ3(x1)∩ϕ3(y)| ≤ 2. When ϕ3(x) = ϕ3(y), we choose α, β ∈ ϕ3(x) = ϕ3(y) and γ ∈ ϕ̄3(x);
when ϕ3(x) 
= ϕ3(y), we select α ∈ ϕ3(x) \ϕ3(y), β ∈ ϕ3(y) \ϕ3(x), and γ ∈ ϕ3(x) \ {α}. Thus
we can define ϕ3(y1) = {α, β, γ} as required. Finally, assume instead that d(x, x1) = 3, and
so d(x1, y) ≥ 3. By induction on t and by applying (i)–(iii), it suffices to color x1 such that
|ϕ3(x1)∩ϕ3(x)| = |ϕ3(x1)∩ϕ3(y)| = 1. So if ϕ3(x) = ϕ3(y), then we choose α ∈ ϕ3(x) = ϕ3(y)
and β, γ ∈ ϕ̄3(x); if ϕ3(x) 
= ϕ3(y), then we select α ∈ ϕ3(x) \ ϕ3(y), β ∈ ϕ3(y) \ ϕ3(x), and
γ ∈ [7] \ (ϕ3(x) ∪ ϕ3(y)). Hence we can set ϕ3(y1) = {α, β, γ} as desired. This completes the
proof. �

Let Ht(a, b; c, d) be the graph obtained from a necklace N(x, y) with d(x, y) = t by adding
an (x1, x)-thread and an (x2, x)-thread at x with d(x, x1) = a and d(x, x2) = b, and adding a
(y1, y)-thread and a (y2, y)-thread at y with d(y, y1) = c and d(y, y2) = d (possibly c = d = 0,
and in this case y = y1 = y2). Define W = {x1, x2, y1, y2} to be the end vertices of Ht(a, b; c, d).
See Figure 2 for an illustration.
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H5(2, 1; 0, 0) H2(2, 2; 3, 3)

Figure 2 The graphs H5(2, 1; 0, 0) and H2(2, 2; 3, 3).

Lemma 3.4 Let W = {x1, x2, y1, y2} be the end vertices of Ht(a, b; c, d), and let ϕ3 be a
precoloring of W .

(i) If |ϕ3(x1) ∩ ϕ3(x2)| = 1, then H5(2, 1; 0, 0) and H4(2, 2; 0, 0) are (ϕ3,W )-colorable.
(ii) If |ϕ3(x1) ∩ ϕ3(x2)| = 0, then H3(3, 3; 0, 0) is (ϕ3,W )-colorable.
(iii) If |ϕ3(x1)∩ϕ3(x2)| = 1 and |ϕ3(y1)∩ϕ3(y2)| = 1, then H3(2, 2; 2, 2) is (ϕ3,W )-colorable.
(iv) If |ϕ3(x1)∩ϕ3(x2)| = 1 and |ϕ3(y1)∩ϕ3(y2)| = 0, then H2(2, 2; 3, 3) is (ϕ3,W )-colorable.

Proof (i) To show that H5(2, 1; 0, 0) is (ϕ3,W )-colorable, it is enough to color x with ϕ3(x)
such that |ϕ3(x) ∩ ϕ3(x1)| = 2, |ϕ3(x) ∩ ϕ3(x2)| = 0 and |ϕ3(x) ∩ ϕ3(y)| ≤ 2, and then
the rest follows from Lemma 3.1 and Lemma 3.3 (iii). To this end, we choose a color α ∈
ϕ̄3(x2) \ ϕ3(y), and then choose other two colors β, γ ∈ ϕ̄3(x2) \ {α} appropriately such that
|{α, β, γ} ∩ϕ3(x1)| = 2. This is possible since |ϕ3(x1)∩ϕ3(x2)| = 1 and |ϕ̄3(x1)∩ϕ3(x2)| = 2.
Now we define ϕ3(x) = {α, β, γ}, which provides a desired coloring with |ϕ3(x) ∩ ϕ3(y)| ≤ 2
since α /∈ ϕ3(y).

To verify that H4(2, 2; 0, 0) is (ϕ3,W )-colorable, by Lemma 3.1 and Lemma 3.3 (ii), it
suffices to color x with ϕ3(x) such that |ϕ3(x) ∩ ϕ3(x1)| = |ϕ3(x) ∩ ϕ3(x2)| = 2 and 1 ≤
|ϕ3(x) ∩ ϕ3(y)| ≤ 2. Denote ϕ3(x1) ∩ ϕ3(x2) = {α}. If α ∈ ϕ3(y), then we select a color
β ∈ (ϕ3(x1) ∪ ϕ3(x2)) \ ϕ3(y), w.l.o.g., say β ∈ ϕ3(x1) \ ϕ3(y), and then we choose a color
γ ∈ ϕ3(x2) \ {α}. If α /∈ ϕ3(y), then we choose a color β ∈ (ϕ3(x1) ∪ ϕ3(x2)) ∩ ϕ3(y), w.l.o.g.,
say β ∈ ϕ3(x1) ∩ ϕ3(y), and then we select a color γ ∈ ϕ3(x2) \ {α}. Thus we can define
ϕ3(x) = {α, β, γ}, which satisfies 1 ≤ |ϕ3(x) ∩ ϕ3(y)| ≤ 2 as desired.

(ii) For proving that H3(3, 3; 0, 0) is (ϕ3,W )-colorable, we shall color x with ϕ3(x) such that
|ϕ3(x)∩ϕ3(x1)| = |ϕ3(x)∩ϕ3(x2)| = |ϕ3(x)∩ϕ3(y)| = 1, and so the statement holds by Lemma
3.1 and Lemma 3.3 (i). Assume that |ϕ3(x1)∩ϕ3(y)| ≥ |ϕ3(x2)∩ϕ3(y)|. As |ϕ3(x1)∩ϕ3(x2)| =
0, we have |ϕ3(x1) ∩ ϕ3(y)| ≥ 1. When |ϕ3(x1) ∩ ϕ3(y)| = 3, we select α ∈ ϕ3(x1), β ∈ β(x2),
and γ ∈ [7] \ (ϕ3(x1) ∪ ϕ3(x2)). When |ϕ3(x1) ∩ ϕ3(y)| = 2, we choose α ∈ ϕ3(x1) \ ϕ3(y)
and β ∈ ϕ3(y) \ ϕ3(x1). Let γ ∈ ϕ3(x2) if β /∈ ϕ3(x2), and let γ ∈ [7] \ (ϕ3(x1) ∪ ϕ3(x2))
if β ∈ ϕ3(x2). When |ϕ3(x1) ∩ ϕ3(y)| = 1, let α ∈ ϕ3(x1) \ ϕ3(y), β ∈ ϕ3(x2) \ ϕ3(y), and
γ ∈ ϕ3(y) \ (ϕ3(x1) ∪ ϕ3(x2)). In any case, we always define ϕ3(x) = {α, β, γ} satisfying
|ϕ3(x) ∩ ϕ3(x1)| = |ϕ3(x) ∩ ϕ3(x2)| = |ϕ3(x) ∩ ϕ3(y)| = 1 as required. This proves (ii).

(iii) For convenience, we may assume that ϕ3(x1) = {1, 2, 3}, ϕ3(x2) = {1, 4, 5}, ϕ3(y1) =
{α, β1, γ1}, and ϕ3(y2) = {α, β2, γ2}, where α, β1, γ1, β2, γ2 are distinct colors.

Now we show that H3(2, 2; 2, 2) is (ϕ3,W )-colorable. The arguments are divided into three
cases as follows. First, assume that α = 1. As {2, 3, 4, 5}∩{β1, β2, γ1, γ2} 
= ∅, we may, w.l.o.g.,
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assume that β1 = 2. Then we choose θ1 ∈ {4, 5} \ {γ1} and define ϕ3(x) = {1, 2, θ1}. Similarly,
we choose θ2 ∈ {β2, γ2}\{θ1} and define ϕ3(y) = {1, γ1, θ2}. Hence we have |ϕ3(x)∩ϕ3(y)| = 1,
and we can extend ϕ3 to become a fractional (7 : 3)-coloring of H3(2, 2; 2, 2) by Lemma 3.1
and Lemma 3.3 (i). Second, we assume that α ∈ {2, 3, 4, 5}, and w.l.o.g., say α = 2. Recall
that β1, γ1, β2, γ2 are distinct colors, and we have 1 /∈ {β1, γ1} or 1 /∈ {β2, γ2}. W.l.o.g., we
assume that 1 /∈ {β2, γ2}. Note that 1 
= β1 or 1 
= γ1, say 1 
= β1. Choose θ1 ∈ {4, 5} \ {β1}
and θ2 ∈ {β2, γ2} \ {θ1}. Define ϕ3(x) = {1, 2, θ1} and ϕ3(y) = {2, β1, θ2}. Hence we have
|ϕ3(x) ∩ ϕ3(y)| = 1, and thus we are done by Lemma 3.1 and Lemma 3.3 (i). At last, we
assume α ∈ {6, 7}, say α = 6. Note that |{2, 3, 4, 5} ∩ {β1, γ1, β2, γ2}| ≥ 1, w.l.o.g., say β1 = 2.
Choose θ2 ∈ {β2, γ2}\{1} and θ1 ∈ {4, 5}\{θ2}. Define ϕ3(x) = {1, 2, θ1} and ϕ3(y) = {2, 6, θ2}.
Hence always get |ϕ3(x)∩ϕ3(y)| = 1, and we are done by Lemma 3.1 and Lemma 3.3 (i). This
finishes the proof of (iii).

(iv) For convenience, we may denote ϕ3(y1) = {1, 2, 3}, ϕ3(y2) = {4, 5, 6}, ϕ3(x1) =
{α, β1, γ1}, and ϕ3(x2) = {α, β2, γ2}, where α, β1, γ1, β2, γ2 are all distinct colors. When α = 7,
as β1 ∈ {1, 2, 3, 4, 5, 6}, we may, w.l.o.g., assume β1 = 1. Now we define ϕ3(x) = {1, 7, β2} and
choose θ ∈ {4, 5, 6} \ {β2} to define ϕ3(y) = {1, 7, θ}. When α 
= 7, we may, w.l.o.g., assume
α = 1. As {α, β1, γ1, β2, γ2} ∩ {4, 5, 6} 
= ∅, we may, w.l.o.g., assume β1 = 4. Then we define
ϕ3(y) = {1, 4, 7} and choose θ ∈ {β2, γ2} \ {7} to define ϕ3(x) = {1, 4, θ}. Thus we always have
|ϕ3(x) ∩ ϕ3(y)| = 2 in any case, and then H2(2, 2; 3, 3) is (ϕ3,W )-colorable by Lemma 3.1 and
Lemma 3.3 (i). This completes the proof. �

3.2 Completing the Proof of Theorem 1.8

Now we prove Theorem 1.8 restated below for convenience.
Theorem 1.8. Every plane graph of girth at least 7 without cycles of length from 8 to 35 is
fractional (7 : 3)-colorable.
Proof By contradiction, suppose that Theorem 1.8 is false. Let G be a counterexample with
|V (G)|+ |E(G)| minimized. Then we have the following claim, whose proof is the same as that
of Claim 2.1 and thus omitted.

Claim 3.1 G is 2-connected. In particular, δ(G) ≥ 2.

For 3 ≥ a ≥ b ≥ 1, define Bt(a, b; 0, 0) as the graph obtained from an Ht(a, b; 0, 0) by joining
a new (x1, x2)-path of length 7 − a− b, where the vertices in the new (x1, x2)-path (including
x1, x2) may have arbitrary degrees in G. Let

B1 = {B5(2, 1; 0, 0), B4(2, 2; 0, 0), B3(3, 3; 0, 0)}.
For 3 ≥ a ≥ b ≥ 1 and 3 ≥ c ≥ d ≥ 1, define Bt(a, b; c, d) to be the graph obtained from

an Ht(a, b; c, d) by joining a new (x1, x2)-path of length 7 − a − b and a new (y1, y2)-path of
length 7 − c− d, where the vertices in each new (x1, x2)-path and new (y1, y2)-path (including
x1, x2, y1, y2) may have arbitrary degrees in G. Denote

B2 = {B3(2, 2; 2, 2), B2(2, 2; 3, 3)} and B = B1 ∪ B2.

That is, the graphs in B1 consist of a necklace N(x, y) and a 7-cycle Cx with a common vertex
x, where in Cx there exist an (a − 1)-thread and a (b − 1)-thread starting at x; the graphs in
B2 consist of a necklace N(x, y) and two 7-cycles Cx and Cy with common vertices x and y,
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respectively, where in Cx there exist an (a − 1)-thread and a (b − 1)-thread starting at x and
in Cy there exist a (c− 1)-thread and a (d− 1)-thread starting at y.

Claim 3.2 (i) G contains no necklace N(x, y) with dG(x, y) ≥ 6.
(ii) G contains none of the graphs in B.

Proof of Claim 3.2 (i) Suppose to the contrary that G contains a necklace N(x, y) with
dG(x, y) ≥ 6. By the minimality of G, G − (V (N(x, y)) \ {x, y}) has a fractional (7 : 3)-
coloring ϕ. By Lemma 3.3 (iv), ϕ can be extended to a fractional (7 : 3)-coloring of N(x, y),
and thus it results in a fractional (7 : 3)-coloring of G, a contradiction.

(ii) Let B be a graph in B with end vertices x1, x2, y1, y2. (In some situation, we may have
y1 = y2 = y.) Then G − (V (B) \ {x1, x2, y1, y2}) admits a fractional (7 : 3)-coloring ϕ by the
minimality of G. Applying Lemma 3.4 (i)–(iv), the precoloring {ϕ(x1), ϕ(x2), ϕ(y1), ϕ(y2)} of
{x1, x2, y1, y2} can be extended to a fractional (7 : 3)-coloring of B. Combining the coloring ϕ
of G− V (B), we obtain a fractional (7 : 3)-coloring of G, a contradiction.

From G, we obtain a subgraph G′ as follows: for each facial 7-cycle C of G, if there exists
a 2-vertex in C, then we delete all the 2-vertices of a longest thread of C. Clearly, the obtained
graph G′ is a plane graph of girth at least 7, and it contains no cycles of length from 8 to 35;
moreover, each facial 7-cycle of G′ contains no 2-vertices. It is also easy to check that G′ has
minimal degree at least 2 by its construction.

Let T (v0, vt+1) be a (v0, vt+1)-thread of G′. If v0v1 is in a facial 7-cycle C0 of G whose 2-
vertices of a longest thread is deleted in G′, then we say that v0 is a bad end vertex of T (v0, vt+1);
otherwise, v0 is called a good end vertex of T (v0, vt+1).

Claim 3.3 Let T (v0, vt+1) = v0v1v2 . . . vtvt+1 be a t-thread of G′. If v0 is a good end vertex
of T (v0, vt+1), then t ≤ 4 (i.e., d(v0, vt+1) ≤ 5).

Proof of Claim 3.3. Suppose to the contrary that t ≥ 5. If vt+1 is a good end vertex of
T (v0, vt+1), then the thread T (v0, vt+1) in G′ transfers to a necklace N(v0, vt+1) in G with
dG(v0, vt+1) = t+ 1 ≥ 6, which is a contradiction to Claim 3.2 (i). So we assume vtvt+1 is in a
facial 7-cycle Ct of G whose 2-vertices of a longest thread is deleted in G′. We denote j be the
index such that vj−1vj /∈ E(Ct) and vjvj+1 ∈ E(Ct), and we define y = vj . By the construction
of G′, we have j ≥ t − 2. If j = t − 2, then G contains a B3(3, 3; 0, 0); if j = t − 1, then G

contains a B4(2, 2; 0, 0); and if j = t, then G contains a B5(2, 1; 0, 0). Thus G contains a graph
in B1, a contradiction to Claim 3.2 (ii).

Claim 3.4 G′ contains no 8+-thread.

Proof of Claim 3.4 Suppose to the contrary that G′ has an 8+-thread T (v0, vt+1) = v0v1v2 · · ·
vtvt+1 with t ≥ 8. By Claim 3.3, we have that v0 and vt+1 are bad end vertices of T (v0, vt+1).
Let C0 be the 7-cycle of G containing v0v1 whose 2-vertices of a longest thread is deleted in G′.
We denote by i the index such that vi−1vi ∈ E(C0) and vivi+1 /∈ E(C0). By the construction of
G′, we have i ≤ 3. Then T (vi, vt+1) = vivi+1vi+2 . . . vtvt+1 is a (t− i)-thread (where t− i ≥ 5)
of G′ with vi being a good end vertex, which is a contradiction to Claim 3.3.

Claim 3.5 G′ contains no (k1, k2, k3)-thread such that k1 + k2 + k3 ≥ 16.

Proof of Claim 3.5 Suppose to the contrary that G′ has a (k1, k2, k3)-thread with center vertex
x and end vertices u, v, w such that dG′(x, u) = k1 + 1, dG′(x, v) = k2 + 1, dG′(x,w) = k3 + 1
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and k1 +k2 +k3 ≥ 16. Let xu1 (xv1, xw1, resp.) be the edge incident with x in the (x, u)-thread
((x, v)-thread, (x,w)-thread, resp.) of G′. Assume that any two of xu1, xv1, xw1 are not in a
common facial 7-cycle of G. Note that

max{dG′(x, u), dG′(x, v), dG′(x,w)} ≥
⌈
k1 + k2 + k3

3
+ 1

⌉
≥ 7,

w.l.o.g., say dG′(x, u) ≥ 7. Hence G′ contains an (x, u)-thread with x being a good end vertex,
a contradiction to Claim 3.3.

Assume instead that two of xu1, xv1, xw1 are in a common facial 7-cycle Cx of G whose
2-vertices of a longest thread is deleted in G′, we may, w.l.o.g., assume xv1, xw1 ∈ E(Cx) and
xu1 /∈ E(Cx). Let v′ be the common neighbor of Cx and the (x, v)-thread T (x, v) such that
dG(x, v′) is as large as possible, and let w′ be the common vertex of Cx and the (x,w)-thread
T (x,w) such that dG(x,w′) is as large as possible. By Claim 3.3, we have that dG′(x, u) ≤ 5,
dG′(v′, v) ≤ 5 and dG′(w′, w) ≤ 5. Then dG′(x, v′) + dG′(x,w′) ≥ 19 − 5 − 5 − 5 = 4. By the
construction of G′, we have dG′(x, v′) + dG′(x,w′) ≤ 2×7

3 . Hence dG′(x, v′) + dG′(x,w′) = 4,
dG′(v, w′) = 3, dG′(x, u) = 5, dG′(v′, v) = 5 and dG′(w′, w) = 5. Note that dG′(x, v′) ≥ 2 or
dG′(x,w′) ≥ 2, say dG′(x, v′) ≥ 2. If v is a good end vertex of T (v, v′), then the thread T (v, v′)
in G′ transfers to a necklace N(v, v′) in G, and hence G contains a B5(2, 1; 0, 0), a contradiction
to Claim 3.2 (ii). Assume that Cv is the 7-cycle of G containing vy whose 2-vertices of a longest
thread is deleted in G′, where y is the neighbor of v in the (v, x)-thread. Let y′ be the common
neighbor of Cv and the (v, x)-thread T (v, x) such that dG(v, y′) is as large as possible. By the
construction of G′, we have d(v, y′) ≤ 3. Notice that the thread T (y′, v′) in G′ transfers to a
necklace N(y′, v′) in G. If d(v, y′) = 3, then G contains a B2(3, 3; 2, 2); and if d(v, y′) = 2, then
G contains a B3(2, 2; 2, 2); and if d(v, y′) = 1, then G contains a B4(2, 2; 2, 1), hence G contains
a B4(2, 2; 0, 0). In any case, G contains a graph in B, a contradiction to Claim 3.2 (ii).

Now we are ready to complete the proof by a discharging method on G′.
Let F (G′) be the set of faces of G′. From Euler Formula, we have

∑

v∈V (G′)

(
5
2
dG′(v) − 7

)
+

∑

f∈F (G′)

(dG′(f) − 7) = −14. (3.1)

Assign an initial charge ch0(v) = 5
2dG′(v) − 7 for each v ∈ V (G′), and ch0(f) = dG′(f) − 7

for each f ∈ F (G′). Hence the total charge is −14 by Eq. (3.1).
We redistribute the charges according to the following rules.
(RI) Every 36+-face of G′ gives charge 29

36 to each of its incident vertices.
(RII) Every 3+-vertex of G′ gives charge 7

36 to each of its weakly adjacent 2-vertices.
Let ch denote the charge assignment after performing the charge redistribution using rules

(RI) and (RII).

Claim 3.6 We have ch(f) ≥ 0 for each f ∈ F (G′) and ch(v) ≥ 0 for each v ∈ V (G′).

Proof of Claim 3.6 Clearly, each 7-face f has charge ch(f) = ch0(f) = 0. Each 36+-face f
sends charge 29

36 to each incident vertices by (RI). So

ch(f) = ch0(f) − 29
36
dG′(f) = dG′(f) − 7 − 29

36
dG′(f) =

7
36
dG′(f) − 7 ≥ 0.

Hence ch(f) ≥ 0 for each f ∈ F (G′), and it remains to show that ch(v) ≥ 0 for each v ∈ V (G′).
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First we assume dG′(v) = 2. Then ch0(v) = −2. By Claims 3.1 and 3.4, v is weakly adjacent
to two 3+-vertices, and thus v receives charge 7

36 × 2 from them by (RII). By (RI), v receives
charge 29

36 × 2 from its two incident faces. Thus ch(v) = −2 + 7
36 × 2 + 29

36 × 2 = 0.
Next we assume dG′(v) ≥ 3. Let t(v) be the number of 2-vertices weakly adjacent to v.

Suppose v is adjacent to r(v) facial 7-cycles. Since G′ contains no cycles of length from 8 to
35, any two 7-cycles of G′ have no common edge, and thus r(v) ≤ dG′ (v)

2 . By Claim 3.4 and by
the construction of G′, each thread incident with v contains at most seven 2-vertices and each
7-cycle contains no 2-vertices, and so we have t(v) ≤ 7(dG′(v) − 2r(v)). By (RI), v receives
charge 29

36 (dG′(v) − r(v)) from its incident faces. By (RII), v sends 7/36 to each of its weakly
adjacent 2-vertices. Therefore, we have

ch(v) =
(

5
2
dG′(v) − 7

)
+

29
36

(
dG′(v) − r(v)

)
− 7

36
t(v). (3.2)

Assume that dG′(v) ≥ 4. By Eq. (3.2), it follows from t(v) ≤ 7(dG′(v) − 2r(v)) that

ch(v) ≥ 5
2
dG′(v) − 7 +

29
36

(dG′(v) − r(v)) − 7
36

· 7(dG′(v) − 2r(v))

=
35
18
dG′(v) − 7 +

69
36
r(v)

≥ 35
18

· 4 − 7 =
7
9
> 0.

Assume instead that dG′(v) = 3. Then ch0(v) = 1
2 and r(v) ≤ 1. If r(v) = 1, then t(v) ≤ 7

by Claim 3.4. Thus by Eq. (3.2) we have

ch(v) ≥ 1
2

+
29
36

· 2 − 7
36

· 7 =
27
36

> 0.

If r(v) = 0, then t(v) ≤ 15 by Claim 3.5. Thus it follows from Eq. (3.2) that

ch(v) ≥ 1
2

+
29
36

· 3 − 7
36

· 15 = 0.

This proves Claim 3.6.
By Eq. (3.1) and Claim 3.6, we have

−14 =
∑

v∈V (G′)

ch0(v) +
∑

f∈F (G′)

ch0(f) =
∑

v∈V (G′)

ch(v) +
∑

f∈F (G′)

ch(f) ≥ 0,

a contradiction. This contradiction finishes the proof of Theorem 1.8. �

4 Concluding Remarks

In this paper, we complete the proof of the fractional version of Conjecture 1.4, namely, every
planar graph of girth p without cycles of length from p + 1 to p(p− 2) is fractional (p : p−1

2 )-
colorable for any prime p ≥ 5. However, the related fractional version of Conjecture 1.1 is still
open for k ≥ 3. In view of Theorem 1.3 (ii), it would be interesting to attempt to make an
improvement on its fractional version, that is, to show that every planar graph of girth at least
14 is fractional (7 : 3)-colorable. There are also some versions of those circular and fractional
coloring problems concerning forbidden odd cycles, and we refer the readers to [11] for more
details.
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