Acta Mathematica Sinica, English Series May, 2023, Vol. 39, No. 5, pp. 904–922 Published online: October 1, 2022 https://doi.org/10.1007/s10114-022-1085-7 http://www.ActaMath.com

Acta Mathematica Sinica, English Series

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022

Fractional Coloring Planar Graphs under Steinberg-type Conditions

Xiao Lan HU

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, P. R. China E-mail: xlhu@mail.ccnu.edu.cn

Jia Ao LI¹⁾

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China E-mail: lijiaao@nankai.edu.cn

Abstract A Steinberg-type conjecture on circular coloring is recently proposed that for any prime $p \ge 5$, every planar graph of girth p without cycles of length from p+1 to p(p-2) is C_p -colorable (that is, it admits a homomorphism to the odd cycle C_p). The assumption of $p \ge 5$ being prime number is necessary, and this conjecture implies a special case of Jaeger's Conjecture that every planar graph of girth 2p - 2 is C_p -colorable for prime $p \ge 5$. In this paper, combining our previous results, we show the fractional coloring version of this conjecture is true. Particularly, the p = 5 case of our fractional coloring result shows that every planar graph of girth 5 without cycles of length from 6 to 15 admits a homomorphism to the Petersen graph.

Keywords Fractional coloring, circular coloring, planar graphs, girth, homomorphism

MR(2010) Subject Classification 05C15, 05C10

1 Introduction

Jaeger [12] in 1988 conjectured that every 9-edge-connected graph admits a circular 5/2-flow (or equivalently, admits an orientation such that the indegree is congruent to the outdegree modulo 5 at each vertex). Jaeger observed that his conjecture implies the celebrated 5-Flow Conjecture of Tutte [19]. He also extended Tutte's 3-Flow, 5-Flow Conjectures and proposed a more general circular flow conjecture that every 4k-edge-connected graph admits a circular $\frac{2k+1}{k}$ -flow. Jaeger's Circular Flow Conjecture was confirmed for highly connected graphs by Thomassen [18] and later for 6k-edge-connected graphs by Lovász et al. [14], but it was disproved for $k \geq 3$ recently in [9]. Tutte's Flow Conjectures remain open as of today. The counterexamples of Jaeger's Circular Flow Conjecture presented in [9] are nonplanar graphs, and so it still remains open for planar graphs, which can be equivalently stated below as homomorphism to odd cycles

Received February 2, 2021, revised October 9, 2021, accepted November 17, 2021

The first author was partially supported by the National Natural Science Foundation of China (Grant No. 11971196) and Hubei Provincial Science and Technology Innovation Base (Platform) Special Project 2020DFH002; the second author was partially supported by the National Natural Science Foundation of China (Grant Nos. 11901318, 12131013) and the Young Elite Scientists Sponsorship Program by Tianjin (Grant No. TJSQNTJ-2020-09)

¹⁾ Corresponding author

by duality. Here for any graph H, a graph is called H-colorable if it admits a homomorphism to H.

Conjecture 1.1 ([12]) Every planar graph of girth at least 4k is C_{2k+1} -colorable.

Conjecture 1.1 has received considerable attentions, and many progresses have been made in [2, 7, 13, 16, 20]. The current best general result towards Conjecture 1.1 is due to Lovász et al. [14] in 2013, from the dual of their flow results.

Theorem 1.2 ([14]) Every planar graph of girth at least 6k is C_{2k+1} -colorable.

For the cases of $k \in \{1, 2, 3\}$, better results are known. The case k = 1 of Conjecture 1.1 is Grötzsch's 3-Coloring Theorem [8]. Proved in 1959, it stated that every triangle-free planar graph is 3-colorable. The following results on the cases k = 2, 3 are obtained by Dvořák and Postle [5], Cranston and Li [4], and Postle and Smith-Roberge [17], respectively.

Theorem 1.3 (i) ([4, 5]) Every planar graph of girth at least 10 is C_5 -colorable.

(ii) ([4, 17]) Every planar graph of girth at least 16 is C_7 -colorable.

Note that Theorems 1.2 and 1.3 are still valid if we replace girth conditions by odd-girth conditions. Steinberg considered a different approach. Instead of forbidding small (odd) cycles, he asked what if we forbid cycles of certain length. More specifically Steinberg conjectured that every planar graph without cycles of length 4 or 5 is C_3 -colorable. Motivated by this problem, the authors in [11] studied its generalization on C_k -coloring under similar Steinberg-type conditions: for each odd integer $k \ge 3$, what is the smallest number f(k) such that every planar graph of girth k without cycles of length from k + 1 to f(k) is C_k -colorable? A known result in [1] and the counterexamples of Steinberg's Conjecture in [3] provide that $f(3) \in \{6,7\}$. It is proved in [11] that f(k) exists if and only if k is an odd prime, and for any prime $p \ge 5$, $p^2 - \frac{5}{2}p + \frac{3}{2} \le f(p) \le 2p^2 + 2p - 5$. Furthermore, it is conjectured that $f(p) \le p^2 - 2p$, which states the following.

Conjecture 1.4 ([11]) For any prime $p \ge 5$, every planar graph of girth p without cycles of length from p + 1 to p(p - 2) is C_p -colorable.

It is observed in [11] that Conjecture 1.4, if true, would imply Conjecture 1.1 for each prime $p = 2k + 1 \ge 5$. The first case p = 5 is very special, as it not only implies that planar graphs of girth at least 8 are C_5 -colorable, but also implies the Five Color Theorem that every planar graph is 5-colorable (see [11]).

The fractional coloring, as introduced in [10], is a well-known generalization of ordinary coloring of graphs. For positive integers s and t with $s \ge t$, a fractional (s:t)-coloring φ of a graph G is a set coloring that assigns a t-element subset of $\{1, \ldots, s\}$ to each vertex such that $\varphi(u) \cap \varphi(v) = \emptyset$ for each edge $uv \in E(G)$. Equivalently, a graph is fractional (s:t)-colorable if and only if it admits a homomorphism to the Kneser graph K(s,t) (or saying that it is K(s,t)colorable). Since the odd cycle C_{2k+1} is a subgraph of the Kneser graph K(2k + 1, k), we have that every C_{2k+1} -colorable graph is fractional (2k+1:k)-colorable, but not vice versa. In particular, fractional (2k+1:k)-coloring can be viewed as a relaxation of C_{2k+1} -coloring. When k = 2, the Kneser graph K(5, 2) is the well-known Petersen graph, and Dvořák, Škrekovski, and Valla [6] proved the fractional coloring version of Conjecture 1.1 in this case. **Theorem 1.5** ([6]) Every planar graph of girth at least 8 is fractional (5:2)-colorable (or equivalently, admits a homomorphism to the Petersen graph).

In [15], Naserasr proposed a stronger conjecture that every planar graph of odd-girth 2t + 3 is fractional (2t + 1 : t)-colorable (or equivalently, admits a homomorphism to the Kneser graph K(2t + 1, t)). A fractional coloring result related to Conjecture 1.4 is obtained in [11].

Theorem 1.6 ([11]) For any odd integer $k \ge 5$, every planar graph of girth k without cycles of length from k + 1 to $\lfloor \frac{22k}{3} \rfloor$ is fractional $(k : \frac{k-1}{2})$ -colorable.

Since $p(p-2) \ge \frac{22p}{3}$ when $p \ge 11$, Theorem 1.6 confirms the fractional coloring version of Conjecture 1.4 for all prime $p \ge 11$. The purpose of this paper is to prove the remaining cases p = 5, 7 of the fractional coloring version of Conjecture 1.4.

Theorem 1.7 Every planar graph of girth 5 without cycles of length from 6 to 15 is fractional (5:2)-colorable (or equivalently, admits a homomorphism to the Petersen graph).

Theorem 1.8 Every planar graph of girth 7 without cycles of length from 8 to 35 is fractional (7:3)-colorable.

Corollary 1.9 The fractional coloring version of Conjecture 1.4 is true.

We remark that, other than Theorem 1.5 of Dvořák et al. [6], the fractional coloring version of Conjecture 1.1 is still open for each $k \ge 3$. Although Conjecture 1.4 implies Conjecture 1.1 for each prime $p = 2k + 1 \ge 5$ (see [11]), their fractional coloring versions seem not to have this relation. Hence Theorem 1.7 does not imply and in turn is not implied by Theorem 1.5.

At the end of this section, we will give some definitions and notations that will be used throughout this paper. In a graph G, a k-vertex is a vertex of degree k. A k-thread of length k (k-thread for short) of G is a path $uv_1v_2 \cdots v_kw$ such that v_i is a 2-vertex for $1 \leq i \leq k$. The end vertices of the path are called the end vertices of the thread. A thread with end vertices x, y is also called an (x, y)-thread. A k^+ -thread of G is a thread of length at least k. A (k_1, k_2, \ldots, k_t) -thread T_x in G is a subgraph consisting of distinct k_1 -thread, k_2 -thread, \ldots , k_t -thread which share a common end vertex x, where x is called the center of T_x . If z is a 2-vertex of an (x, y)-thread, then we say x and z are weakly adjacent. For a positive integer t, let $[t] = \{1, 2, \ldots, t\}$. Let φ be a fractional (2k + 1 : k)-coloring of G, and for any $v \in V(G)$, denote $\overline{\varphi}(v) = [2k+1] \setminus \varphi(v)$. Fix a graph H and a vertex subset S of V(H). A precoloring φ_k of S assigns colors in $\binom{[2k+1]}{k}$ to vertices in S such that H[S] is properly fractional (2k + 1 : k)colored. We say that H is (φ_k, S) -colorable if the precoloring φ_k of S can be extended to all vertices of H to obtain a fractional (2k + 1 : k)-coloring.

The rest of this paper is organized as follows. Section 2 presents the proof of Theorem 1.7, Section 3 is devoted to the proof of Theorem 1.8, and a few concluding remarks are given in Section 4.

2 Fractional (5:2)-coloring of Planar Graphs

This section is aiming to give the proof of Theorem 1.7. We first study some graphs with precoloring extensions in Subsection 2.1, serving for reducible configurations, and then present the proof of Theorem 1.7 in Subsection 2.2 by a discharging method.

2.1 Precoloring for Fractional (5:2)-coloring

We first show that certain precoloring of some vertices can be extended.

Lemma 2.1 Let $P = v_1 v_2 \dots v_n$ be a path and φ_2 be a precoloring of $S = \{v_1, v_n\}$.

- (i) If n = 3, then P is (φ_2, S) -colorable if and only if $|\varphi_2(v_1) \cup \varphi_2(v_3)| \leq 3$.
- (ii) If n = 4, then P is (φ_2, S) -colorable if and only if $\varphi_2(v_1) \neq \varphi_2(v_4)$.
- (iii) If $n \ge 5$, then P is (φ_2, S) -colorable.

Proof (i) This is obvious since we have enough colors in $[5] \setminus (\varphi_2(v_1) \cup \varphi_2(v_3))$ to color v_2 , and vice versa.

(ii) We select two available colors in $\bar{\varphi}_2(v_1)$ to color v_2 , say that v_2 receives color set $\varphi_2(v_2)$. Now the coloring can be extended to v_3 if and only if $|\varphi_2(v_2) \cup \varphi_2(v_4)| \leq 3$ by (i). This is possible if and only if $\varphi_2(v_1) \neq \varphi_2(v_4)$.

(iii) When n = 5, we have three colors not in $\varphi_2(v_1)$, and it is always possible to color v_2 with $\varphi_2(v_2) \subset \overline{\varphi}_2(v_1)$ such that $\varphi_2(v_2) \neq \varphi_2(v_5)$. Thus P is (φ_2, S) -colorable by (ii). For $n \ge 6$, we can arbitrarily color vertices v_{n-1}, \ldots, v_5 first, and then extend this coloring to v_2, v_3, v_4 as before.

By Lemma 2.1 (i) (ii), we have the following lemma.

Lemma 2.2 Let C be a 5-cycle $u_0u_1u_2u_3u_4u_0$ and φ_2 be a precoloring of $\{u_0, u_2\}$. Then C is $(\varphi_2, \{u_0, u_2\})$ -colorable if and only if $|\varphi_2(u_0) \cup \varphi_2(u_2)| = 3$.

Lemma 2.3 Let H_1 be a graph consisting of a path $v_0v_1v_2...v_6$ and two edges v_2w_2, v_4w_4 . Given a precoloring φ_2 of $V(H_1) \setminus \{v_3\}$, let ϕ_2 be the restriction of φ_2 on $S = \{v_0, v_6, w_2, w_4\}$. Then H_1 is (ϕ_2, S) -colorable.

Proof Since $|\bar{\varphi}_2(w_2)| = |\bar{\varphi}_2(w_4)| = 3$, we have $\bar{\varphi}_2(w_2) \cap \bar{\varphi}_2(w_4) \neq \emptyset$. Let $\alpha \in \bar{\varphi}_2(w_2) \cap \bar{\varphi}_2(w_4)$. Note that $\varphi_2(v_0) \neq \varphi_2(w_2)$ and $\varphi_2(v_6) \neq \varphi_2(w_4)$ by Lemma 2.1(ii). We select a color β such that $\beta \in \varphi_2(v_0) \cap \bar{\varphi}_2(w_2)$ if $\alpha \notin \varphi_2(v_0)$, and $\beta \in \bar{\varphi}_2(w_2) \setminus \{\alpha\}$ otherwise. Similarly, choose a color γ such that $\gamma \in \varphi_2(v_6) \cap \bar{\varphi}_2(w_4)$ if $\alpha \notin \varphi_2(v_6)$, and $\gamma \in \bar{\varphi}_2(w_4) \setminus \{\alpha\}$ otherwise. Define $\phi_2(v_2) = \{\alpha, \beta\}$ and $\phi_2(v_4) = \{\alpha, \gamma\}$. Then H_1 is $(\phi_2, S \cup \{v_2, v_4\})$ -colorable by Lemma 2.1(i). \Box

Lemma 2.4 (i) Let H_1 be a graph consisting of a path $v_0v_1v_2v_3$, a path $v_0u_1u_2$ and an edge v_0w_1 . Given a precoloring φ_2 of $V(H_1) \setminus \{v_1, v_2\}$, let ϕ_2 be the restriction of φ_2 on $S = \{v_3, u_2, w_1\}$. Then H_1 is (ϕ_2, S) -colorable.

(ii) Let H_2 be a graph consisting of three paths $v_0v_1v_2$, $v_0u_1u_2$ and $v_0w_1w_2$. Then for any precoloring φ_2 of $S = \{v_2, u_2, w_2\}$, H_2 is (φ_2, S) -colorable.

Proof (i) Let $\alpha \in \bar{\varphi}_2(w_1) \setminus \varphi_2(v_3)$. Choose $\beta \in \varphi_2(u_2) \cap \bar{\varphi}_2(w_1) \setminus \{\alpha\}$ if possible, and $\beta \in \bar{\varphi}_2(w_1) \setminus \{\alpha\}$ if $\varphi_2(u_2) \cap \bar{\varphi}_2(w_1) \setminus \{\alpha\} = \emptyset$. Define $\phi_2(v_0) = \{\alpha, \beta\}$. Then by Lemma 2.1 (i) (ii) H_1 is $(\phi_2, S \cup \{v_0\})$ -colorable.

(ii) Since

$$\left| \begin{pmatrix} \bar{\varphi}_2(v_2) \\ 2 \end{pmatrix} \right| + \left| \begin{pmatrix} \bar{\varphi}_2(u_2) \\ 2 \end{pmatrix} \right| + \left| \begin{pmatrix} \bar{\varphi}_2(w_2) \\ 2 \end{pmatrix} \right| = 9 < 10 = \left| \begin{pmatrix} [5] \\ 2 \end{pmatrix} \right|$$

there exists $\{\alpha, \beta\} \in {[5] \choose 2}$ which is not in $(\bar{\varphi}_2(v_2)) \cup (\bar{\varphi}_2(u_2)) \cup (\bar{\varphi}_2(w_2))$, and so define $\varphi_2(v_0) = \{\alpha, \beta\}$. Then H_2 is $(\varphi_2, S \cup \{v_0\})$ -colorable by Lemma 2.1 (i).

Lemma 2.5 Let H be a graph consisting of two 5-cycles $v_0v_1v_2v_3v_4$ and $v_0u_1u_2u_3u_4$.

(i) For any precoloring φ_2 of $S = \{v_2, v_3, u_2, u_3\}$, H is (φ_2, S) -colorable.

(ii) Given a precoloring φ_2 of $V(H) \setminus \{v_1, v_2\}$, let ϕ_2 be the restriction of φ_2 on $S = \{v_3, u_1, u_2, u_3\}$. Then H is (ϕ_2, S) -colorable.

Proof (i) By Lemma 2.1 (i), we only need to color v_0 with $\varphi_2(v_0)$ such that $|\varphi_2(v_0) \cap \varphi_2(x)| = 1$ for each $x \in \{v_2, v_3, u_2, u_3\}$. Clearly, we have $(\varphi_2(v_2) \cup \varphi_2(v_3)) \cap \varphi_2(u_2) \neq \emptyset$, w.l.o.g., let $\alpha \in \varphi_2(v_2) \cap \varphi_2(u_2)$. If $\varphi_2(v_3) \cap \varphi_2(u_3) \neq \emptyset$, then we choose $\beta \in \varphi_2(v_3) \cap \varphi_2(u_3)$, and set $\varphi_2(v_0) = \{\alpha, \beta\}$, we are done. Otherwise, $\varphi_2(v_3) \cap \varphi_3(u_3) = \emptyset$ and $\varphi_2(v_3) \cup \varphi_2(u_3) = [5] \setminus \{\alpha\}$. Now we have $\varphi_2(v_2) \cap \varphi_2(u_3) = \varphi_2(v_2) \setminus \{\alpha\}$, say $\varphi_2(v_2) \setminus \{\alpha\} = \{\alpha'\}$. Moreover, $\varphi_2(v_3) \cap \varphi_2(u_2) \neq \emptyset$, and we let $\beta \in \varphi_2(v_3) \cap \varphi_2(u_2)$. Then define $\varphi_2(v_0) = \{\alpha', \beta\}$ as desired.

(ii) We may assume that $\varphi_2(v_3) = \varphi_2(v_0)$; otherwise H is $(\varphi_2, V(H) \setminus \{v_1, v_2\})$ -colorable by Lemma 2.1(ii), and thus is (ϕ_2, S) -colorable as well. By Lemma 2.2, $|\varphi_2(v_0) \cap \varphi_2(u_3)| = 1$. Let $\alpha \in \varphi_2(v_0) \cap \varphi_2(u_3)$ and $\beta \in \overline{\varphi}_2(u_1) \setminus \varphi_2(u_3)$. Define $\phi_2(v_0) = \{\alpha, \beta\}$. Then $|\phi_2(v_0) \cap \phi_2(v_3)| = 1$, and $|\phi_2(v_0) \cap \phi_2(u_3)| = 1$. Thus, by Lemma 2.1(i) and Lemma 2.2, H is (ϕ_2, S) -colorable. \Box

Lemma 2.6 Let H be a graph consisting of a 5-cycle $v_0v_1v_2v_3v_4v_0$, a 5-cycle $u_0u_1u_2u_3u_4u_0$, and an edge v_0u_0 . Given a precoloring φ_2 of $V(H) \setminus \{v_0, v_1, v_4\}$, let ϕ_2 be the restriction of φ_2 on $S = \{v_2, v_3, u_2, u_3, u_4\}$. Then H is (ϕ_2, S) -colorable.

Proof By Lemma 2.2, we have $|\varphi_2(u_2) \cap \varphi_2(u_4)| = 1$. Let $\alpha \in \varphi_2(u_2) \setminus \varphi_2(u_4)$. If $\alpha \notin \varphi_2(v_2) \cup \varphi_2(v_3)$, then we choose $\beta \in \overline{\varphi}_2(u_4) \setminus \varphi_2(u_2)$, and then select a color $\gamma_1 \in \varphi_2(v_2) \setminus \{\beta\}$ and a color $\gamma_2 \in \varphi_2(v_3) \setminus \{\beta\}$. Define $\phi_2(v_0) = \{\gamma_1, \gamma_2\}$ and $\phi_2(u_0) = \{\alpha, \beta\}$. Hence H is $(\phi_2, S \cup \{v_0, u_0\})$ colorable by Lemma 2.1(i). Assume instead that $\alpha \in \varphi_2(v_2) \cup \varphi_2(v_3)$, w.l.o.g., say $\alpha \in \varphi_2(v_2)$. Then we have $\alpha \notin \varphi_2(v_3)$. Let $\gamma_1 \in \varphi_2(v_2) \setminus \{\alpha\}$. Choose $\beta \in \overline{\varphi}_2(u_4) \setminus (\varphi_2(u_2) \cup \{\gamma_1\})$, and let $\gamma_2 \in \varphi_2(v_3) \setminus \{\beta\}$. Define $\phi_2(v_0) = \{\gamma_1, \gamma_2\}$ and $\phi_2(u_0) = \{\alpha, \beta\}$. This shows that H is $(\phi_2, S \cup \{v_0, u_0\})$ -colorable by Lemma 2.1 (i) as well. \Box

Lemma 2.7 (i) Let H_1 be a graph consisting of a 5-cycle $v_0v_1v_2v_3v_4v_0$ and an edge v_0u_1 . Given a precoloring φ_2 of $S = \{v_2, v_3, u_1\}$, if $\varphi_2(u_1) \neq \varphi_2(v_2)$ and $\varphi_2(u_1) \neq \varphi_2(v_3)$, then H_1 is (φ_2, S) -colorable.

(ii) Let H_2 be a graph consisting of a 5-cycle $v_0v_1v_2v_3v_4v_0$ and a path $v_0u_1u_2$. Given a precoloring φ_2 of $V(H_2) \setminus \{u_1\}$, let ϕ_2 be the restriction of φ_2 on $S = \{v_1, v_2, v_3, u_2\}$. If $\phi_2(u_2) \neq \phi_2(v_1)$, then H_2 is (ϕ_2, S) -colorable.

Proof (i) Since $\varphi_2(u_1) \neq \varphi_2(v_2)$ and $\varphi_2(u_1) \neq \varphi_2(v_3)$, we can choose $\alpha \in \varphi_2(v_2) \setminus \varphi_2(u_1)$ and $\beta \in \varphi_2(v_3) \setminus \varphi_2(u_1)$. Define $\varphi_2(v_0) = \{\alpha, \beta\}$. Then H_1 is $(\varphi_2, S \cup \{v_0\})$ -colorable by Lemma 2.1 (i).

(ii) As φ_2 provides a fractional (5 : 2)-coloring of 5-cycle $v_0v_1v_2v_3v_4$, we have $|\varphi_2(v_1) \cup \varphi_2(v_3)| = 3$ by Lemma 2.2. Let $\alpha \in \overline{\varphi}_2(v_1) \cap \varphi_2(v_3)$. If $\alpha \in \varphi_2(u_2)$, we choose a color $\beta \in \overline{\varphi}_2(v_1) \setminus \{\alpha\}$ and define $\phi_2(v_0) = \{\alpha, \beta\}$. If $\alpha \notin \varphi_2(u_2)$, we can choose $\beta \in \varphi_2(u_2) \cap \overline{\varphi}_2(v_1)$ as $\varphi_2(u_2) \neq \varphi_2(v_1)$, and then define $\phi_2(v_0) = \{\alpha, \beta\}$. In any case, H_2 is $(\phi_2, S \cup \{v_0\})$ -colorable by Lemma 2.1 (i).

2.2 Proof of Theorem 1.7

In this subsection, we shall prove Theorem 1.7 by analyzing the structure of the potential minimal counterexample and proceeding with a discharging proof. In the rest of this section, we always let G be a counterexample to Theorem 1.7 such that |V(G)| + |E(G)| is minimized.

2.2.1 Subgraph Structures of a Minimum Counterexample

We start with some basic properties of the minimal counterexample G.

Claim 2.1 G is 2-connected and particularly $\delta(G) \geq 2$.

Proof Clearly, G is connected. If G is not 2-connected and contains a cut vertex v, then there exist proper induced subgraphs G_1 and G_2 of G such that $E(G) = E(G_1) \cup E(G_2)$ and $V(G_1) \cap V(G_2) = \{v\}$. By the minimality of the counterexample, G_1 has a (5:2)-coloring φ and G_2 has a (5:2)-coloring ψ . Exchange the colors if necessarily such that $\varphi(v) = \psi(v)$, then φ and ψ combine to become a fractional (5:2)-coloring of G, which is a contradiction. \Box

Figure 1 An AL-path, a (1,1;1,0)-edge, a (1,1;1,1)-vertex and a (2,1;1,0)-vertex

A subgraph of G consists of a path $v_0v_1v_2...v_6$ and two edges v_2w_2, v_4w_4 with $d_G(v_1) = d_G(v_3) = d_G(v_5) = 2$ and $d_G(v_2) = d_G(v_4) = 3$ is called an *alternating-path* (*AL-path* for short). An edge v_0u_0 is called a (1, 1; 1, 0)-edge if v_0 and u_0 are respectively in vertex-disjoint 5-cycles $v_0v_1v_2v_3v_4v_0$ and $u_0u_1u_2u_3u_4u_0$ with $d_G(v_0) = d_G(u_0) = 3$ and $d_G(v_1) = d_G(v_4) = d_G(u_1) = 2$, as in Lemma 2.6. A 4-vertex is called a (1, 1; 1, 1)-vertex if it is a center of a (1, 1, 1, 1)-thread and is incident with two edge-disjoint 5-cycles, as in Lemma 2.5 (i). Similarly, a 4-vertex is called a (2, 1; 1, 0)-vertex if it is a center of a (2, 1, 1, 0)-thread and is incident with two edge-disjoint 5-cycles, and a 1-thread, and the other contains a 1-thread, as in Lemma 2.5 (ii). See Figure 1 for an illustration, where the degrees of the black solid vertices in G equal their degrees in the figure.

By Lemmas 2.1–2.6, we get several reducible structures which do not appear in the minimal counterexample G.

Claim 2.2 G contains none of the following configurations:

(i) a 3^+ -thread,

- (ii) an AL-path,
- (iii) a (1, 1, 1)-thread or a (2, 1, 0)-thread,
- (iv) a (1, 1; 1, 1)-vertex or a (2, 1; 1, 0)-vertex,
- (v) a (1, 1; 1, 0)-edge.

Proof Suppose for a contradiction that G contains one of the above configurations H. Let S be the vertex set defined as in one of Lemmas 2.1–2.6. We obtain a subgraph G_1 of G by deleting the vertex set $V(H) \setminus S$. By the minimality of G, G_1 admits a fractional (5 : 2)-coloring φ , where each vertex in S receives a color set with certain restrictions. Applying Lemmas 2.1–2.6, H is (φ, S) -colorable, and so we extend this coloring φ to become a fractional (5 : 2)-coloring of G, a contradiction.

2.2.2 Exploring the Subgraph G'

Next, unlike some standard methods, we explore further structure of G from its subgraph G'.

From G, we obtain a subgraph G' as follows.

(i) If there exist two (or more) adjacent 2-vertices in a 5-cycle of G, then we delete all those 2-vertices.

(ii) If there exist some 2-vertices in a 5-cycle of G but no adjacent 2-vertices, then we delete a 2-vertex in the 5-cycle (arbitrarily).

Clearly, the obtained graph G' is of girth at least 5 and contains no cycles of length from 6 to 15, and moreover each 5-cycle of G' contains no 2-vertices. It is easy to see that G' has minimal degree at least 2 by its construction. Furthermore, in each step of constructing G' we only delete either a single 2-vertex or two adjacent 2-vertices by Claim 2.2 (i).

Claim 2.3 G' contains no 3^+ -thread.

Proof Suppose, for a contradiction, that *xabcy* is a path of G' with $d_{G'}(a) = d_{G'}(b) = d_{G'}(c) = 2$. Since G contains no adjacent C_5 , $d_G(b) \le 4$. We divide our discussion into three cases below.

If $d_G(b) = 4$, then there exist a 5-cycle in G containing ab and another 5-cycle in G containing bc. Let $bv_1v_2v_3ab$ and $bu_1u_2u_3cb$ be the corresponding 5-cycles. Since v_1 is deleted in G', we have that either v_1, v_2 are two adjacent 2-vertices deleted in G', or v_1 is a single deleted 2-vertex. In any case, we have $d_G(a) = d_{G'}(a) = 2$. By symmetry, we also obtain that $d_G(c) = d_{G'}(c) = 2$. Hence b is a (1, 1; 1, 1)-vertex in G, a contradiction to Claim 2.2 (iv).

If $d_G(b) = 3$, w.l.o.g., we may assume that ab is contained in a 5-cycle $bv_1v_2v_3ab$ in G. Then $d_G(a) = d_{G'}(a) = 2$, and so v_1 is a single deleted 2-vertex by Claim 2.2 (iii). Moreover, we also have $d_G(c) \neq 2$ since G contains no (1, 1, 1)-thread by Claim 2.2 (iii). Thus $d_G(c) = 3$ and cy is contained in a 5-cycle $cyz_1z_2z_3c$, where z_3 is a deleted 2-vertex. Now the edge bc is a (1, 1; 1, 0)-edge, a contradiction to Claim 2.2 (v).

If $d_G(b) = 2$, since G has no 3⁺-thread by Claim 2.2 (i), one of a and c has degree at least 3, say $d_G(a) \ge 3$. If $d_G(a) = 4$, then a is incident with two 5-cycles, where a, b, c are contained in a 5-cycle $abcz_1z_2a$ of G and z_2 is a deleted 2-vertex. By the construction of G', we have $d_G(c) \ge 3$, and thus $y \ne z_1$ and z_1 is also a deleted 2-vertex as $d_{G'}(c) = 2$. Thus a is a (2, 1; 1, 0)-vertex, a contradiction to Claim 2.2 (iv). So we assume $d_G(a) = 3$ in the following. Since G contains no (2, 1, 0)-thread by Claim 2.2 (iii), we must have $d_G(c) \ge 3$, and so $d_G(c) = 3$ with a similar argument as above. Since G contains no (2, 1, 0)-thread, then a, b, and c cannot be contained in the same C_5 . Now let $av_1v_2v_3x_a$, $cu_1u_2u_3y_c$ be the corresponding 5-cycles containing ax, cy, respectively. Hence we have $d_G(v_1) = d_G(u_1) = d_G(b) = 2$ and $d_G(a) = d_G(c) = 3$. This results in an AL-path in G, contradicting to Claim 2.2 (ii). This proves Claim 2.3.

The key of the proof is the following claim to rule out (2, 2, 2)-threads in G'.

Claim 2.4 G' contains no (2, 2, 2)-thread.

Proof Suppose to the contrary that there is a (2, 2, 2)-thread consisting of paths vx_1x_2 , vy_1y_2 , vz_1z_2 , where $d_{G'}(v) = 3$ and $d_{G'}(x_i) = d_{G'}(y_i) = d_{G'}(z_i) = 2$ for $1 \le i \le 2$. By the construction of G', x_2y_2 , x_2z_2 , $y_2z_2 \notin E(G')$. We first show the following fact.

Subclaim 2.4.1 $d_G(v) = d_{G'}(v) = 3.$

Proof of Subclaim 2.4.1 If $d_G(v) \ge 4$, then there exist deleted 2-vertices in G, which corresponds to a 5-cycle containing v. Since either a single 2-vertex or two adjacent 2-vertices are deleted in constructing G', we may, w.l.o.g., let $vu_1u_2x_2x_1v$ be such a 5-cycle, where u_1 is a deleted 2-vertex. If u_2 is not a deleted 2-vertex of G, then both x_1 and x_2 are 2-vertices of G, which are contained in the 5-cycle $vu_1u_2x_2x_1v$. According to the construction rules of G', we should delete 2-vertices x_1, x_2 and keep the vertex u_1 in G'. This is a contradiction. So we must have that both u_1 and u_2 are deleted 2-vertices. In this case, $d_G(x_1) = d_{G'}(x_1) = 2$ and x_2 is incident with a 1-thread x_2x_1v and a 2-thread $x_2u_2u_1v$. By Claim 2.2 (iii), we have $d_G(x_2) > 3$, and so $d_G(x_2) = 4$, which implies that x_2 is contained in another 5-cycle of G, say $x_2w_1w_2w_3w_4x_2$, where w_1 is a deleted 2-vertex. Hence x_2 is a (2, 1; 1, 0)-vertex, a contradiction to Claim 2.2 (iv).

Next we obtain further structures around the vertex v.

Subclaim 2.4.2 The vertex v is not contained in any 5-cycle of G.

Proof of Subclaim 2.4.2 If v is contained in a 5-cycle of G, we shall distinguish two cases according to the distribution of the 5-cycle.

Case 1 Assume that v is contained in a 5-cycle of G which contains one deleted 2-vertex. W.l.o.g., we may assume this 5-cycle to be $vy_1uz_2z_1v$, where u is the deleted 2-vertex. Clearly, there is no 5-cycle of G containing vx_1 since G contains no adjacent 5-cycles and $d_G(v) = 3$ by Subclaim 2.4.1, and so we have $d_G(x_1) \leq 3$ and $d_G(x_2) \leq 3$. If $d_G(x_1) = 3$, then x_1x_2 is contained in a 5-cycle $x_1u_1u_2u_3x_2x_1$, where u_1 is a deleted 2-vertex. Hence u_1, x_2, z_1 are all 2-vertices of G and $d_G(v) = d_G(x_1) = 3$. Thus vx_1 is a (1, 1; 1, 0)-edge, contradicting to Claim 2.2 (v). Otherwise, we have $d_G(x_2) = 3$. Since v is not in a (2, 1, 0)-thread by Claim 2.2 (iii), we have $d_G(x_2) > 2$, and so $d_G(x_2) = 3$. This implies that x_2 is contained in a 5-cycle $x_2u_1u_2u_3u_4x_2$, where u_1 is a deleted 2-vertex. Hence $z_2z_1vx_1x_2u_1u_2$ is an AL-path, a contradiction to Claim 2.2 (ii).

Case 2 Assume instead that v is contained in a 5-cycle of G which contains two adjacent 2-vertices deleted. W.l.o.g., we assume this 5-cycle to be vy_1uwz_1v , where u and w are deleted 2-vertices. By the minimality of G, $G - \{v, y_1, u, w, z_1\}$ has a fractional (5 : 2)-coloring φ . If $d_G(z_1) = 4$, then z_1z_2 is in a 5-cycle $z_1a_1a_2a_3z_2z_1$, where z_2 and a_1 are 2-vertices of G. We erase the color of z_2, a_1 , and let $T_1 = \{\{\alpha, \beta\} : \alpha \in \varphi(a_2), \beta \in \varphi(a_3)\}$. If $d_G(z_1) = 3$, then by Claim 2.2 (iii), we have z_2 is in a 5-cycle $z_2a_1a_2a_3a_4z_2$ where a_1 is a deleted 2-vertex. We erase the color of z_2, a_1 , and define $T_1 = \{\{\alpha, \beta\} : \alpha \in \varphi(a_4), \beta \in \overline{\varphi}(a_4) \setminus \varphi(a_2)\}$. Note that we have

 $|T_1| \ge 4$ in any case, and T_1 contains a subset of type $\{\{\alpha_1, \beta_1\}, \{\alpha_1, \beta_2\}, \{\alpha_2, \beta_1\}, \{\alpha_2, \beta_2\}\},\$ where $\alpha_1, \alpha_2, \beta_1, \beta_2$ are distinct. Moreover, any color of z_1 in T_1 can extend to the erased vertices z_2 and a_1 by Lemma 2.1. Similarly, we can define a set T_2 according to the structure of y_1 such that T_2 contains a subset of type $\{\{\gamma_1, \theta_1\}, \{\gamma_1, \theta_2\}, \{\gamma_2, \theta_1\}, \{\gamma_2, \theta_2\}\},\$ where $\gamma_1, \gamma_2, \theta_1, \theta_2$ are distinct.

If $d_G(x_1) = 2$, then either $d_G(x_2) = 2$ or $d_G(x_2) = 3$ where x_2 is contained in a 5-cycle with some 2-vertices deleted. Let x_3 be the neighbor of x_2 in G' other than x_1 . In the coloring φ , we erase the color of x_1, x_2 and the deleted 2-vertex in the 5-cycle containing x_2 (if exists). Set $T_3 = \binom{[5]}{2} \setminus \{\varphi(x_3)\}$. By Lemma 2.4 (ii) or Claim 2.2 (ii), any color of v in T_3 can be extended to x_1, x_2 and the deleted 2-vertex. If $d_G(x_1) = 3$, then x_1 is contained in a 5-cycle $x_1u_1u_2u_3x_2x_1$, where u_1 is a deleted 2-vertex. In the coloring φ , we erase the color of u_1, x_1, x_2 and set $T_3 = \binom{[5]}{2} \setminus \{\varphi(u_2), \varphi(u_3)\}$. Then any color of v in T_3 can be extended to u_1, x_1, x_2 by Lemma 2.4 (i). Since $\varphi(u_2) \cap \varphi(u_3) = \emptyset$, we have that T_3 contains a subset of size 8 with type $\binom{[5]}{2} \setminus \{\{\eta_1, \eta_2\}, \{\eta_3, \eta_4\}\}$, where $\eta_1, \eta_2, \eta_3, \eta_4$ are distinct.

Now it suffices to color z_1 , y_1 and v such that $\varphi(z_1) \in T_1$, $\varphi(y_1) \in T_2$, $\varphi(v) \in T_3$, and $|\varphi(z_1) \cap \varphi(y_1)| = 1$. Then by Lemmas 2.1 and 2.4, φ can be extended to G. Recall that $\alpha_1, \alpha_2, \beta_1, \beta_2$ are distinct, and $\gamma_1, \gamma_2, \theta_1, \theta_2$ are distinct. In addition, we have either $\{\alpha_1, \beta_1\} \subset \{\gamma_1, \gamma_2, \theta_1, \theta_2\}$ or $\{\alpha_2, \beta_2\} \subset \{\gamma_1, \gamma_2, \theta_1, \theta_2\}$. By symmetry, we may assume that $\{\alpha_1, \beta_1\} \subset \{\gamma_1, \gamma_2, \theta_1, \theta_2\}$ and $\alpha_1 = \gamma_1$. Since $\eta_1, \eta_2, \eta_3, \eta_4$ are distinct, $|\{\beta_1, \beta_2\} \cap \{\eta_1, \eta_2, \eta_3, \eta_4\}| \ge 1$, say $\beta_1 = \eta_1$. If $|\{\alpha_1, \beta_1, \theta_1, \theta_2\} \cap \{\eta_3, \eta_4\}| \ge 1$, let $\theta^* \in \{\theta_1, \theta_2\} \cap \{\eta_3, \eta_4\} = 1$, and let $\theta^* \in \{\theta_1, \theta_2\}$ otherwise. Define $\varphi(z_1) = \{\alpha_1, \beta_1\}, \varphi(y_1) = \{\alpha_1, \theta^*\}$, and define $\varphi(v) = [5] \setminus (\varphi(y_1) \cup \varphi(z_1))$. Note that $|\varphi(v) \cap \{\eta_1, \eta_2\}| \le 1$ and $|\varphi(v) \cap \{\eta_3, \eta_4\}| \le 1$. Then we have $\varphi(v) \in T_3, \varphi(y_1) \in T_2$ and $\varphi(z_1) \in T_1$ as desired. Now we assume $|\{\alpha_1, \beta_1, \theta_2\} \cap \{\eta_3, \eta_4\}| = 0$, then $\beta_1 \in \{\theta_1, \theta_2\}$, say $\beta_1 = \theta_1$. Note that $\{\alpha_1, \beta_1, \theta_2, \eta_3, \eta_4\} = [5]$, and $\gamma_2 \notin \{\alpha_1, \beta_1, \theta_2\}$ as $\alpha_1 = \gamma_1, \gamma_2, \beta_1 = \theta_1, \theta_2$ are all distinct. So $\gamma_2 \in \{\eta_3, \eta_4\}$. Define $\varphi(v) \in T_3, \varphi(y_1) \in T_2$ and $\varphi(v) = [5] \setminus (\varphi(y_1) \cup \varphi(z_1))$. Then we have $\varphi(v) \in T_3, \varphi(y_1) \in T_2$ and $\varphi(v) = [5] \setminus (\varphi(y_1) \cup \varphi(z_1))$.

Then we are able to complete the proof of Claim 2.4.

Subclaim 2.4.3 Such a (2, 2, 2)-thread with center vertex v does not exist in G', a contradiction. Hence Claim 2.4 holds.

Proof of Subclaim 2.4.3 Let φ be a fractional (5:2)-coloring of G - v. We shall erase the color set of some vertices and then extend the coloring φ to G. By Subclaim 2.4.2 v is not contained in any 5-cycle of G, and so $d_G(x_1) \leq 3$, $d_G(y_1) \leq 3$ and $d_G(z_1) \leq 3$. If $d_G(x_1) = 2$, then either $d_G(x_2) = 2$ or $d_G(x_2) = d_{G'}(x_2) + 1 = 3$ where x_2 is contained in a 5-cycle with some 2-vertex deleted. Let x_3 be the neighbor of x_2 in G' other than x_1 . In the coloring φ , we erase the color of x_1, x_2 and the deleted 2-vertex in the 5-cycle containing x_2 (if exists). Set $L_1 = \{\varphi(x_3)\}$. By Lemma 2.4 (ii) or Claim 2.2 (ii), any color of v not in L_1 can be extended to x_1, x_2 and the deleted 2-vertex. If $d_G(x_1) = 3$, then x_1 is contained in a 5-cycle $x_1u_1u_2u_3x_2x_1$, where u_1 is a deleted 2-vertex. In the coloring φ , we erase the color of u_1, x_1, x_2 and set $L_1 = \{\varphi(u_2), \varphi(u_3)\}$. Then any color of v not in L_1 can be extended to u_1, x_1, x_2 by Lemma 2.4 (i). Similarly, no matter $d_G(y_1) = 2$ or $d_G(y_1) = 3$, we can erase the color of certain vertices and define a list L_2 of cardinality 1 or 2 such that any color of v not in L_2 can be extended to the uncolored vertices by Lemma 2.4 (i) and (ii). Similarly, there is a corresponding list L_3 for vz_1z_2 . Since $|L_1 \cup L_2 \cup L_3| \le 6 < 10$, there is an available choice in $\binom{[5]}{2} \setminus (L_1 \cup L_2 \cup L_3)$ to color v, which extends the coloring to all the erased vertices. This provides a fractional (5:2)-coloring of G, a contradiction.

2.2.3 Discharging

Now we are ready to complete the proof by a discharging method on G'. Note that G' is clearly planar since it is a subgraph of G. In the following, we always assume G' is embedded on the plane. Let F(G') be the set of faces of G'. From Euler Formula, we have

$$\sum_{e \in V(G')} \left(\frac{3}{2} d_{G'}(v) - 5\right) + \sum_{f \in F(G')} (d_{G'}(f) - 5) = -10.$$
(2.1)

Assign an initial charge $ch_0(v) = \frac{3}{2}d_{G'}(v) - 5$ for each $v \in V(G')$, and $ch_0(f) = d_{G'}(f) - 5$ for each $f \in F(G')$. Hence the total charge is -10 by the equation above.

We redistribute the charges according to the following rules.

- (R1) Each 3⁺-vertex sends charge 1 to each of its weakly adjacent 2-vertices.
- (R2) Each 16^+ -face sends charge $\frac{11}{16}$ to its incident vertices.
- (R3) After (R2), each 2-vertex sends its charge equally to its weakly adjacent 3^+ -vertices.

Let ch denote the charge assignment after performing the charge redistribution using the rules (R1), (R2), and (R3).

Claim 2.5 $ch(f) \ge 0$ for each $f \in F(G')$.

Proof First we assume $d_{G'}(f) = 5$. Then $ch(f) = ch_0(f) = d_{G'}(f) - 5 = 0$. Now we assume $d_{G'}(f) \ge 16$ as G' contains no cycles of length from 6 to 15. By (R2), f sends charge $\frac{11}{16}$ to each incident vertices, and then

$$ch(f) = ch_0(f) - \frac{11}{16}d_{G'}(f) = \frac{5}{16}d_{G'}(f) - 5 \ge 0.$$

Claim 2.6 $ch(v) \ge 0$ for each $v \in V(G')$.

Proof Recall that $\delta(G') \geq 2$ by its construction. First we assume $d_{G'}(v) = 2$. Then v is weakly adjacent to two 3⁺-vertex by Claim 2.3, and thus $ch(v) = -2 + 2 \times 1 = 0$ by (R1).

Now we assume $d_{G'}(v) \ge 3$. Let p(v) be the number of 2-vertices weakly adjacent to v, and let t(v) be the number of 5-cycles incident with v.

Notice that there is no 2-vertex in a 5-face of G' by its construction. Since G' has no 3^+ -thread by Claim 2.3, we have

$$p(v) \le 2(d_{G'}(v) - 2t(v)). \tag{2.2}$$

Let p(v, f) be the number of 2-vertices weakly adjacent to v in f. Then

$$\sum_{16^+\text{-}face f \ni v} p(v, f) = 2p(v).$$
(2.3)

By (R1), v sends charge p(v) to its weakly adjacent 2-vertices. By (R2), v receives charge $\frac{11}{16}$ from each incident 16⁺-face and receives charge $p(v, f) \times \frac{11}{16} \times \frac{1}{2}$ from its weakly adjacent 2-vertices. Hence for each 3⁺-vertex $v \in V(G')$, it follows from Eqs. (2.2) and (2.3) that

$$ch(v) = \frac{3}{2}d_{G'}(v) - 5 - p(v) + \sum_{16^+ - \text{face}f \ni v} \left(\frac{11}{16} + \frac{p(v,f)}{2} \cdot \frac{11}{16}\right)$$

Hu X. L. and Li J. A.

$$= \frac{3}{2}d_{G'}(v) - 5 - p(v) + \frac{11}{16}(d_{G'}(v) - t(v)) + \frac{11}{16}p(v)$$

$$= \frac{35}{16}d_{G'}(v) - 5 - \frac{11}{16}t(v) - \frac{5}{16}p(v).$$
 (2.4)

If v is a 4⁺-vertex, by Eqs. (2.2) and (2.4), we have

$$\begin{aligned} ch(v) &= \frac{35}{16} d_{G'}(v) - 5 - \frac{11}{16} t(v) - \frac{5}{16} p(v) \\ &\geq \frac{35}{16} d_{G'}(v) - 5 - \frac{11}{16} t(v) - \frac{5}{16} \cdot 2(d_{G'}(v) - 2t(v)) \\ &= \frac{25}{16} d_{G'}(v) - 5 + \frac{9}{16} t(v) \\ &\geq \frac{25}{16} \cdot 4 - 5 + \frac{9}{16} t(v) \\ &= \frac{5}{4} + \frac{9}{16} t(v) > 0. \end{aligned}$$

If v is a 3-vertex, then $t(v) \leq 1$ as G contains no C_4 . When t(v) = 1, we have $p(v) \leq 2$ by Claim 2.3, and so by Eq. (2.4),

$$ch(v) = \frac{35}{16}d_{G'}(v) - 5 - \frac{11}{16}t(v) - \frac{5}{16}p(v) \ge \frac{35}{16} \cdot 3 - 5 - \frac{11}{16} - \frac{5}{16} \cdot 2 = \frac{4}{16} > 0.$$

When t(v) = 0, we have $p(v) \le 5$ since G' contains no (2, 2, 2)-thread by Claim 2.4, and hence

$$ch(v) \ge \frac{35}{16} \cdot 3 - 5 - \frac{5}{16} \cdot 5 = 0$$

Therefore, all the vertices of G' receive nonnegative final charge.

By the fact that the total amount of charge does not change by its redistribution, combining (2.1) and Claims 2.5 and 2.6, we have

$$-10 = \sum_{v \in V(G')} ch_0(v) + \sum_{f \in F(G')} ch_0(f) = \sum_{v \in V(G')} ch(v) + \sum_{f \in F(G')} ch(f) \ge 0,$$

a contradiction. This contradiction completes the proof of Theorem 1.7.

3 Fractional (7:3)-coloring of Planar Graphs

This section is devoted to proving Theorem 1.8. We first present some reducible configurations under precoloring in Subsection 3.1, and then use a discharging method to complete the proof in Subsection 3.2.

3.1 Precoloring for Fractional (7:3)-coloring

At first, we show that certain precoloring of some vertices can be extended.

Lemma 3.1 Let $P = v_1 v_2 \cdots v_n$ be a path and φ_3 be a precoloring of $S = \{v_1, v_n\}$. Denote $b = |\varphi_3(v_1) \cap \varphi_3(v_n)|$.

- (i) If n = 3, then P is (φ_3, S) -colorable if and only if $b \ge 2$.
- (ii) If n = 4, then P is (φ_3, S) -colorable if and only if $b \leq 1$.
- (iii) If n = 5, then P is (φ_3, S) -colorable if and only if $b \ge 1$.
- (iv) If n = 6, then P is (φ_3, S) -colorable if and only if $b \leq 2$.
- (v) If $n \ge 7$, then P is (φ_3, S) -colorable.

Proof (i) This is obvious since there are enough colors in $[7] \setminus (\varphi_3(v_1) \cup \varphi_3(v_3))$ to color v_2 , and vice versa.

(ii) We choose three available colors in $\bar{\varphi}_3(v_1)$ to color v_2 , and let $\varphi_3(v_2) \subset \bar{\varphi}_3(v_1)$ be the color set of v_2 . Now the coloring can be extended to v_3 if and only if $|\varphi_3(v_2) \cap \varphi_3(v_4)| \geq 2$ by (i). Meanwhile, this is possible if and only if $|\bar{\varphi}_3(v_1) \cap \varphi_3(v_4)| \geq 2$, which is equivalent to $b = |\varphi_3(v_1) \cap \varphi_3(v_4)| \leq 1$.

The proofs of (iii), (iv), and (v) are similar to (ii). We select a color set $\varphi_3(v_2) \subset \bar{\varphi}_3(v_1)$ to color v_2 . Then we are trying to color all vertices of path $v_3v_4 \ldots v_{n-1}$ by previous facts. For n = 5, there exists $\varphi_3(v_2) \subset \bar{\varphi}_3(v_1)$ with $|\varphi_3(v_2) \cap \varphi_3(v_5)| \leq 1$ if and only if $|\varphi_3(v_1) \cap \varphi_3(v_5)| \geq 1$. For n = 6, there exists $\varphi_3(v_2) \subset \bar{\varphi}_3(v_1)$ with $|\varphi_3(v_2) \cap \varphi_3(v_6)| \geq 1$ if and only if $|\varphi_3(v_1) \cap \varphi_3(v_6)| \leq 2$. For n = 7, there exists $\varphi_3(v_2) \subset \bar{\varphi}_3(v_1)$ with $|\varphi_3(v_2) \cap \varphi_3(v_7)| \leq 2$ for any possible color set $\varphi_3(v_1)$ since $\bar{\varphi}_3(v_1) \setminus \varphi_3(v_7) \neq \emptyset$. Thus (iii), (iv), and (v) are all true.

By Lemma 3.1 (i)–(iv), we immediately have the following corollary on precoloring of 7-cycle.

Lemma 3.2 Let $C = u_0 u_1 u_2 u_3 u_4 u_5 u_6 u_0$ be a 7-cycle.

(i) For a precoloring φ_3 of $\{u_0, u_2\}$, C is $(\varphi_3, \{u_0, u_2\})$ -colorable if and only if $|\varphi_3(u_0) \cap \varphi_3(u_2)| = 2$.

(ii) For a precoloring φ_3 of $\{u_0, u_3\}$, C is $(\varphi, \{u_0, u_3\})$ -colorable if and only if $|\varphi_3(u_0) \cap \varphi_3(u_3)| = 1$.

In a graph G, a d- C_7 -replacement operation on a given edge $e = xy \in E(G)$ is to replace the edge e with a 7-cycle $C_7 = v_0v_1 \dots v_6v_0$ by identifying x with v_0 and identifying y with v_d . When d is not explicitly stated, we just call it a C_7 -replacement operation on the edge $e \in E(G)$. A necklace in G is a subgraph obtained from a thread by applying C_7 -replacement operations on some edges. A vertex z is an *end vertex* of the necklace if and only if z is an end vertex of the thread. A necklace with end vertices x, y is also called an (x, y)-necklace, denoted by N(x, y).

Lemma 3.3 Let N(x, y) be a necklace with a precoloring φ_3 of $\{x, y\}$. Suppose that the distance between x and y is d(x, y) = t.

(i) If $t \leq 3$ and $|\varphi_3(x) \cap \varphi_3(y)| = \frac{5}{4} + (-1)^t \cdot \frac{7-2t}{4}$, then N(x,y) is $(\varphi_3, \{x, y\})$ -colorable.

- (ii) If t = 4 and $1 \le |\varphi_3(x) \cap \varphi_3(y)| \le 2$, then N(x, y) is $(\varphi_3, \{x, y\})$ -colorable.
- (iii) If t = 5 and $|\varphi_3(x) \cap \varphi_3(y)| \le 2$, then N(x, y) is $(\varphi_3, \{x, y\})$ -colorable.
- (iv) If $t \ge 6$, then N(x, y) is $(\varphi_3, \{x, y\})$ -colorable.

Proof (i) The statement is clear when t = 1, 2. So we assume t = 3 and let xx_1y_1y be a shortest (x, y)-path in the necklace N(x, y). If x and y are in the same 7-cycle, then the statement follows by Lemma 3.2 (ii). Otherwise, we may assume, w.l.o.g., that x_1y_1 and y_1y are not in a common 7-cycle. So it is enough to color y_1 with $\varphi_3(y_1)$ such that $\varphi_3(y_1) \cap \varphi_3(y) = \emptyset$ and $|\varphi_3(y_1) \cap \varphi_3(x)| = 2$. Then by the case t = 2 we can extend this coloring φ_3 to become a fractional (7 : 3)-coloring of N(x, y). To construct such a coloring $\varphi_3(y_1)$, we select two colors $\alpha, \beta \in \varphi_3(x) \setminus \varphi_3(y)$ and another color $\gamma \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$, and then define $\varphi_3(y_1) = \{\alpha, \beta, \gamma\}$ as desired.

(ii) Let xx_1zy_1y be a shortest path in the necklace N(x, y). Then there exist two consecutive

edges in the path xx_1zy_1y that does not belong to a common 7-cycle. By symmetry, we have two cases as follows. If x_1z and zy_1 are not in a common 7-cycle, then it suffices to color zwith $\varphi_3(z)$ such that $|\varphi_3(x) \cap \varphi_3(z)| = |\varphi_3(z) \cap \varphi_3(y)| = 2$. With an application of (i), this coloring φ_3 can be extended to a fractional (7 : 3)-coloring of N(x, y). To this end, we select colors $\alpha \in \varphi_3(x) \cap \varphi_3(y)$, $\beta \in \varphi_3(x) \setminus \varphi_3(y)$, and $\gamma \in \varphi_3(y) \setminus \varphi_3(x)$ to set $\varphi_3(z) = \{\alpha, \beta, \gamma\}$ as required. Assume instead that zy_1 and y_1y are not in a common 7-cycle. Hence, by applying (i), it suffices to color y_1 with $\varphi_3(y_1)$ such that $|\varphi_3(x) \cap \varphi_3(y_1)| = 1$ and $|\varphi_3(y_1) \cap \varphi_3(y)| = 0$. Now we choose two colors $\alpha, \beta \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$ and a color $\gamma \in \varphi_3(x) \setminus \varphi_3(y)$ to define $\varphi_3(y_1) = \{\alpha, \beta, \gamma\}$ as required.

(iii) Let $xx_1z_1z_2y_1y$ be a shortest path of length 5 in the necklace N(x, y). By symmetry, in the path $xx_1z_1z_2y_1y$ there are two cases for the existence of two consecutive edges which do not belong to a common 7-cycle. Assume first that z_1z_2 and z_2y_1 are not in a common 7-cycle. By applying (i), it is enough to color z_2 with $\varphi_3(z_2)$ such that $|\varphi_3(x) \cap \varphi_3(z_2)| = 1$ and $|\varphi_3(z_2) \cap \varphi_3(y)| = 2$. So if $1 \leq |\varphi_3(x) \cap \varphi_3(y)| \leq 2$ we choose $\alpha \in \varphi_3(x) \cap \varphi_3(y)$, $\beta \in \varphi_3(y) \setminus \varphi_3(x)$, and $\gamma \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$; if $|\varphi_3(x) \cap \varphi_3(y)| = 0$ we choose $\alpha, \beta \in \varphi_3(y)$ and $\gamma \in \varphi_3(x)$. Hence we can define $\varphi_3(z_2) = \{\alpha, \beta, \gamma\}$ as desired. Now assume instead that z_2y_1 and y_1y are not in a common 7-cycle. By applying (i) and (ii), it suffices to color y_1 with $\varphi_3(y_1)$ such that $1 \leq |\varphi_3(x) \cap \varphi_3(y_1)| \leq 2$ and $|\varphi_3(y_1) \cap \varphi_3(y)| = 0$. If $1 \leq |\varphi_3(x) \cap \varphi_3(y)| \leq 2$ we choose $\alpha \in \varphi_3(x) \setminus \varphi_3(y)$ and $\beta, \gamma \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$; if $|\varphi_3(x) \cap \varphi_3(y)| = 0$ we choose $\alpha, \beta \in \varphi_3(x)$ and $\gamma \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$. Thus we can define $\varphi_3(y_1) = \{\alpha, \beta, \gamma\}$ as required. This proves (iii).

(iv) Let x_1 be the first cut-vertex of N(x, y) in the shortest (x, y)-path. That is, the subpath from x to x_1 either lies in a common 7-cycle or is an edge xx_1 . We divide our discussion according to the distance $d(x, x_1) \in \{1, 2, 3\}$. If $d(x, x_1) = 1$, then $d(x_1, y) \ge 5$. By induction on t and by applying (iii), it is enough to color x_1 such that $\varphi_3(x_1) \subset \overline{\varphi}_3(x)$ and $|\varphi_3(x_1) \cap \varphi_3(y)| \leq 2$. This can be done since we can select a color $\alpha \in \bar{\varphi}_3(x) \setminus \varphi_3(y)$ and other two colors $\beta, \gamma \in \bar{\varphi}_3(x) \setminus \{\alpha\}$ to formulate $\varphi_3(x_1) = \{\alpha, \beta, \gamma\}$ as required. If $d(x, x_1) = 2$, then $d(x_1, y) \ge 4$. By induction on t and by applying (ii) and (iii), it suffices to color x_1 such that $|\varphi_3(x_1) \cap \varphi_3(x)| = 2$ and $1 \leq |\varphi_3(x_1) \cap \varphi_3(y)| \leq 2$. When $\varphi_3(x) = \varphi_3(y)$, we choose $\alpha, \beta \in \varphi_3(x) = \varphi_3(y)$ and $\gamma \in \overline{\varphi}_3(x)$; when $\varphi_3(x) \neq \varphi_3(y)$, we select $\alpha \in \varphi_3(x) \setminus \varphi_3(y)$, $\beta \in \varphi_3(y) \setminus \varphi_3(x)$, and $\gamma \in \varphi_3(x) \setminus \{\alpha\}$. Thus we can define $\varphi_3(y_1) = \{\alpha, \beta, \gamma\}$ as required. Finally, assume instead that $d(x, x_1) = 3$, and so $d(x_1, y) \geq 3$. By induction on t and by applying (i)–(iii), it suffices to color x_1 such that $|\varphi_3(x_1) \cap \varphi_3(x)| = |\varphi_3(x_1) \cap \varphi_3(y)| = 1$. So if $\varphi_3(x) = \varphi_3(y)$, then we choose $\alpha \in \varphi_3(x) = \varphi_3(y)$ and $\beta, \gamma \in \overline{\varphi}_3(x)$; if $\varphi_3(x) \neq \varphi_3(y)$, then we select $\alpha \in \varphi_3(x) \setminus \varphi_3(y), \beta \in \varphi_3(y) \setminus \varphi_3(x)$, and $\gamma \in [7] \setminus (\varphi_3(x) \cup \varphi_3(y))$. Hence we can set $\varphi_3(y_1) = \{\alpha, \beta, \gamma\}$ as desired. This completes the proof.

Let $H_t(a, b; c, d)$ be the graph obtained from a necklace N(x, y) with d(x, y) = t by adding an (x_1, x) -thread and an (x_2, x) -thread at x with $d(x, x_1) = a$ and $d(x, x_2) = b$, and adding a (y_1, y) -thread and a (y_2, y) -thread at y with $d(y, y_1) = c$ and $d(y, y_2) = d$ (possibly c = d = 0, and in this case $y = y_1 = y_2$). Define $W = \{x_1, x_2, y_1, y_2\}$ to be the *end vertices* of $H_t(a, b; c, d)$. See Figure 2 for an illustration.

Figure 2 The graphs $H_5(2,1;0,0)$ and $H_2(2,2;3,3)$.

Lemma 3.4 Let $W = \{x_1, x_2, y_1, y_2\}$ be the end vertices of $H_t(a, b; c, d)$, and let φ_3 be a precoloring of W.

- (i) If $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 1$, then $H_5(2,1;0,0)$ and $H_4(2,2;0,0)$ are (φ_3, W) -colorable.
- (ii) If $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 0$, then $H_3(3,3;0,0)$ is (φ_3, W) -colorable.
- (iii) If $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 1$ and $|\varphi_3(y_1) \cap \varphi_3(y_2)| = 1$, then $H_3(2, 2; 2, 2)$ is (φ_3, W) -colorable. (iv) If $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 1$ and $|\varphi_3(y_1) \cap \varphi_3(y_2)| = 0$, then $H_2(2, 2; 3, 3)$ is (φ_3, W) -colorable.

Proof (i) To show that $H_5(2,1;0,0)$ is (φ_3, W) -colorable, it is enough to color x with $\varphi_3(x)$ such that $|\varphi_3(x) \cap \varphi_3(x_1)| = 2$, $|\varphi_3(x) \cap \varphi_3(x_2)| = 0$ and $|\varphi_3(x) \cap \varphi_3(y)| \leq 2$, and then the rest follows from Lemma 3.1 and Lemma 3.3 (iii). To this end, we choose a color $\alpha \in \overline{\varphi_3}(x_2) \setminus \varphi_3(y)$, and then choose other two colors $\beta, \gamma \in \overline{\varphi_3}(x_2) \setminus \{\alpha\}$ appropriately such that $|\{\alpha, \beta, \gamma\} \cap \varphi_3(x_1)| = 2$. This is possible since $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 1$ and $|\overline{\varphi_3}(x_1) \cap \varphi_3(x_2)| = 2$. Now we define $\varphi_3(x) = \{\alpha, \beta, \gamma\}$, which provides a desired coloring with $|\varphi_3(x) \cap \varphi_3(y)| \leq 2$ since $\alpha \notin \varphi_3(y)$.

To verify that $H_4(2,2;0,0)$ is (φ_3, W) -colorable, by Lemma 3.1 and Lemma 3.3 (ii), it suffices to color x with $\varphi_3(x)$ such that $|\varphi_3(x) \cap \varphi_3(x_1)| = |\varphi_3(x) \cap \varphi_3(x_2)| = 2$ and $1 \leq |\varphi_3(x) \cap \varphi_3(y)| \leq 2$. Denote $\varphi_3(x_1) \cap \varphi_3(x_2) = \{\alpha\}$. If $\alpha \in \varphi_3(y)$, then we select a color $\beta \in (\varphi_3(x_1) \cup \varphi_3(x_2)) \setminus \varphi_3(y)$, w.l.o.g., say $\beta \in \varphi_3(x_1) \setminus \varphi_3(y)$, and then we choose a color $\gamma \in \varphi_3(x_2) \setminus \{\alpha\}$. If $\alpha \notin \varphi_3(y)$, then we choose a color $\beta \in (\varphi_3(x_1) \cup \varphi_3(x_2)) \cap \varphi_3(y)$, w.l.o.g., say $\beta \in \varphi_3(x_1) \cap \varphi_3(y)$, and then we select a color $\gamma \in \varphi_3(x_2) \setminus \{\alpha\}$. Thus we can define $\varphi_3(x) = \{\alpha, \beta, \gamma\}$, which satisfies $1 \leq |\varphi_3(x) \cap \varphi_3(y)| \leq 2$ as desired.

(ii) For proving that $H_3(3,3;0,0)$ is (φ_3, W) -colorable, we shall color x with $\varphi_3(x)$ such that $|\varphi_3(x) \cap \varphi_3(x_1)| = |\varphi_3(x) \cap \varphi_3(x_2)| = |\varphi_3(x) \cap \varphi_3(y)| = 1$, and so the statement holds by Lemma 3.1 and Lemma 3.3 (i). Assume that $|\varphi_3(x_1) \cap \varphi_3(y)| \ge |\varphi_3(x_2) \cap \varphi_3(y)|$. As $|\varphi_3(x_1) \cap \varphi_3(x_2)| = 0$, we have $|\varphi_3(x_1) \cap \varphi_3(y)| \ge 1$. When $|\varphi_3(x_1) \cap \varphi_3(y)| = 3$, we select $\alpha \in \varphi_3(x_1), \beta \in \beta(x_2)$, and $\gamma \in [7] \setminus (\varphi_3(x_1) \cup \varphi_3(x_2))$. When $|\varphi_3(x_1) \cap \varphi_3(y)| = 2$, we choose $\alpha \in \varphi_3(x_1) \setminus \varphi_3(y)$ and $\beta \in \varphi_3(y) \setminus \varphi_3(x_1)$. Let $\gamma \in \varphi_3(x_2)$ if $\beta \notin \varphi_3(x_2)$, and let $\gamma \in [7] \setminus (\varphi_3(x_1) \cup \varphi_3(x_2))$ if $\beta \in \varphi_3(x_2)$. When $|\varphi_3(x_1) \cap \varphi_3(y)| = 1$, let $\alpha \in \varphi_3(x_1) \setminus \varphi_3(y), \beta \in \varphi_3(x_2) \setminus \varphi_3(y)$, and $\gamma \in \varphi_3(y) \setminus (\varphi_3(x_1) \cup \varphi_3(x_2))$. In any case, we always define $\varphi_3(x) = \{\alpha, \beta, \gamma\}$ satisfying $|\varphi_3(x) \cap \varphi_3(x_1)| = |\varphi_3(x) \cap \varphi_3(x_2)| = |\varphi_3(x) \cap \varphi_3(y)| = 1$ as required. This proves (ii).

(iii) For convenience, we may assume that $\varphi_3(x_1) = \{1, 2, 3\}, \varphi_3(x_2) = \{1, 4, 5\}, \varphi_3(y_1) = \{\alpha, \beta_1, \gamma_1\}, \text{ and } \varphi_3(y_2) = \{\alpha, \beta_2, \gamma_2\}, \text{ where } \alpha, \beta_1, \gamma_1, \beta_2, \gamma_2 \text{ are distinct colors.}$

Now we show that $H_3(2,2;2,2)$ is (φ_3, W) -colorable. The arguments are divided into three cases as follows. First, assume that $\alpha = 1$. As $\{2,3,4,5\} \cap \{\beta_1,\beta_2,\gamma_1,\gamma_2\} \neq \emptyset$, we may, w.l.o.g.,

assume that $\beta_1 = 2$. Then we choose $\theta_1 \in \{4,5\} \setminus \{\gamma_1\}$ and define $\varphi_3(x) = \{1,2,\theta_1\}$. Similarly, we choose $\theta_2 \in \{\beta_2, \gamma_2\} \setminus \{\theta_1\}$ and define $\varphi_3(y) = \{1, \gamma_1, \theta_2\}$. Hence we have $|\varphi_3(x) \cap \varphi_3(y)| = 1$, and we can extend φ_3 to become a fractional (7 : 3)-coloring of $H_3(2,2;2,2)$ by Lemma 3.1 and Lemma 3.3 (i). Second, we assume that $\alpha \in \{2,3,4,5\}$, and w.l.o.g., say $\alpha = 2$. Recall that $\beta_1, \gamma_1, \beta_2, \gamma_2$ are distinct colors, and we have $1 \notin \{\beta_1, \gamma_1\}$ or $1 \notin \{\beta_2, \gamma_2\}$. W.l.o.g., we assume that $1 \notin \{\beta_2, \gamma_2\}$. Note that $1 \neq \beta_1$ or $1 \neq \gamma_1$, say $1 \neq \beta_1$. Choose $\theta_1 \in \{4,5\} \setminus \{\beta_1\}$ and $\theta_2 \in \{\beta_2, \gamma_2\} \setminus \{\theta_1\}$. Define $\varphi_3(x) = \{1, 2, \theta_1\}$ and $\varphi_3(y) = \{2, \beta_1, \theta_2\}$. Hence we have $|\varphi_3(x) \cap \varphi_3(y)| = 1$, and thus we are done by Lemma 3.1 and Lemma 3.3 (i). At last, we assume $\alpha \in \{6,7\}$, say $\alpha = 6$. Note that $|\{2,3,4,5\} \cap \{\beta_1,\gamma_1,\beta_2,\gamma_2\}| \geq 1$, w.l.o.g., say $\beta_1 = 2$. Choose $\theta_2 \in \{\beta_2, \gamma_2\} \setminus \{1\}$ and $\theta_1 \in \{4,5\} \setminus \{\theta_2\}$. Define $\varphi_3(x) = \{1,2,\theta_1\}$ and $\varphi_3(y) = \{2,6,\theta_2\}$. Hence always get $|\varphi_3(x) \cap \varphi_3(y)| = 1$, and we are done by Lemma 3.1 and Lemma 3.3 (i). This finishes the proof of (iii).

(iv) For convenience, we may denote $\varphi_3(y_1) = \{1, 2, 3\}, \ \varphi_3(y_2) = \{4, 5, 6\}, \ \varphi_3(x_1) = \{\alpha, \beta_1, \gamma_1\}, \text{ and } \varphi_3(x_2) = \{\alpha, \beta_2, \gamma_2\}, \text{ where } \alpha, \beta_1, \gamma_1, \beta_2, \gamma_2 \text{ are all distinct colors. When } \alpha = 7, \text{ as } \beta_1 \in \{1, 2, 3, 4, 5, 6\}, \text{ we may, w.l.o.g., assume } \beta_1 = 1. \text{ Now we define } \varphi_3(x) = \{1, 7, \beta_2\} \text{ and choose } \theta \in \{4, 5, 6\} \setminus \{\beta_2\} \text{ to define } \varphi_3(y) = \{1, 7, \theta\}. \text{ When } \alpha \neq 7, \text{ we may, w.l.o.g., assume } \alpha = 1. \text{ As } \{\alpha, \beta_1, \gamma_1, \beta_2, \gamma_2\} \cap \{4, 5, 6\} \neq \emptyset, \text{ we may, w.l.o.g., assume } \beta_1 = 4. \text{ Then we define } \varphi_3(y) = \{1, 4, 7\} \text{ and choose } \theta \in \{\beta_2, \gamma_2\} \setminus \{7\} \text{ to define } \varphi_3(x) = \{1, 4, \theta\}. \text{ Thus we always have } |\varphi_3(x) \cap \varphi_3(y)| = 2 \text{ in any case, and then } H_2(2, 2; 3, 3) \text{ is } (\varphi_3, W)\text{-colorable by Lemma 3.1 and Lemma 3.3 (i). This completes the proof.}$

3.2 Completing the Proof of Theorem 1.8

Now we prove Theorem 1.8 restated below for convenience.

Theorem 1.8. Every plane graph of girth at least 7 without cycles of length from 8 to 35 is fractional (7:3)-colorable.

Proof By contradiction, suppose that Theorem 1.8 is false. Let G be a counterexample with |V(G)| + |E(G)| minimized. Then we have the following claim, whose proof is the same as that of Claim 2.1 and thus omitted.

Claim 3.1 G is 2-connected. In particular, $\delta(G) \ge 2$.

For $3 \ge a \ge b \ge 1$, define $B_t(a, b; 0, 0)$ as the graph obtained from an $H_t(a, b; 0, 0)$ by joining a new (x_1, x_2) -path of length 7 - a - b, where the vertices in the new (x_1, x_2) -path (including x_1, x_2) may have arbitrary degrees in G. Let

$$\mathcal{B}_1 = \{B_5(2,1;0,0), B_4(2,2;0,0), B_3(3,3;0,0)\}.$$

For $3 \ge a \ge b \ge 1$ and $3 \ge c \ge d \ge 1$, define $B_t(a, b; c, d)$ to be the graph obtained from an $H_t(a, b; c, d)$ by joining a new (x_1, x_2) -path of length 7 - a - b and a new (y_1, y_2) -path of length 7 - c - d, where the vertices in each new (x_1, x_2) -path and new (y_1, y_2) -path (including x_1, x_2, y_1, y_2) may have arbitrary degrees in G. Denote

$$\mathcal{B}_2 = \{B_3(2,2;2,2), B_2(2,2;3,3)\}$$
 and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$.

That is, the graphs in \mathcal{B}_1 consist of a necklace N(x, y) and a 7-cycle C_x with a common vertex x, where in C_x there exist an (a - 1)-thread and a (b - 1)-thread starting at x; the graphs in \mathcal{B}_2 consist of a necklace N(x, y) and two 7-cycles C_x and C_y with common vertices x and y,

respectively, where in C_x there exist an (a-1)-thread and a (b-1)-thread starting at x and in C_y there exist a (c-1)-thread and a (d-1)-thread starting at y.

Claim 3.2 (i) G contains no necklace N(x, y) with $d_G(x, y) \ge 6$.

(ii) G contains none of the graphs in \mathcal{B} .

Proof of Claim 3.2 (i) Suppose to the contrary that G contains a necklace N(x, y) with $d_G(x, y) \geq 6$. By the minimality of G, $G - (V(N(x, y)) \setminus \{x, y\})$ has a fractional (7 : 3)-coloring φ . By Lemma 3.3 (iv), φ can be extended to a fractional (7 : 3)-coloring of N(x, y), and thus it results in a fractional (7 : 3)-coloring of G, a contradiction.

(ii) Let B be a graph in \mathcal{B} with end vertices x_1, x_2, y_1, y_2 . (In some situation, we may have $y_1 = y_2 = y$.) Then $G - (V(B) \setminus \{x_1, x_2, y_1, y_2\})$ admits a fractional (7:3)-coloring φ by the minimality of G. Applying Lemma 3.4 (i)–(iv), the precoloring $\{\varphi(x_1), \varphi(x_2), \varphi(y_1), \varphi(y_2)\}$ of $\{x_1, x_2, y_1, y_2\}$ can be extended to a fractional (7:3)-coloring of B. Combining the coloring φ of G - V(B), we obtain a fractional (7:3)-coloring of G, a contradiction.

From G, we obtain a subgraph G' as follows: for each facial 7-cycle C of G, if there exists a 2-vertex in C, then we delete all the 2-vertices of a longest thread of C. Clearly, the obtained graph G' is a plane graph of girth at least 7, and it contains no cycles of length from 8 to 35; moreover, each facial 7-cycle of G' contains no 2-vertices. It is also easy to check that G' has minimal degree at least 2 by its construction.

Let $T(v_0, v_{t+1})$ be a (v_0, v_{t+1}) -thread of G'. If v_0v_1 is in a facial 7-cycle C_0 of G whose 2-vertices of a longest thread is deleted in G', then we say that v_0 is a *bad end vertex* of $T(v_0, v_{t+1})$; otherwise, v_0 is called a *good end vertex* of $T(v_0, v_{t+1})$.

Claim 3.3 Let $T(v_0, v_{t+1}) = v_0 v_1 v_2 \dots v_t v_{t+1}$ be a *t*-thread of G'. If v_0 is a good end vertex of $T(v_0, v_{t+1})$, then $t \le 4$ (i.e., $d(v_0, v_{t+1}) \le 5$).

Proof of Claim 3.3. Suppose to the contrary that $t \ge 5$. If v_{t+1} is a good end vertex of $T(v_0, v_{t+1})$, then the thread $T(v_0, v_{t+1})$ in G' transfers to a necklace $N(v_0, v_{t+1})$ in G with $d_G(v_0, v_{t+1}) = t + 1 \ge 6$, which is a contradiction to Claim 3.2 (i). So we assume $v_t v_{t+1}$ is in a facial 7-cycle C_t of G whose 2-vertices of a longest thread is deleted in G'. We denote j be the index such that $v_{j-1}v_j \notin E(C_t)$ and $v_jv_{j+1} \in E(C_t)$, and we define $y = v_j$. By the construction of G', we have $j \ge t - 2$. If j = t - 2, then G contains a $B_3(3,3;0,0)$; if j = t - 1, then G contains a $B_4(2,2;0,0)$; and if j = t, then G contains a $B_5(2,1;0,0)$. Thus G contains a graph in \mathcal{B}_1 , a contradiction to Claim 3.2 (ii).

Claim 3.4 G' contains no 8^+ -thread.

Proof of Claim 3.4 Suppose to the contrary that G' has an 8^+ -thread $T(v_0, v_{t+1}) = v_0 v_1 v_2 \cdots v_t v_{t+1}$ with $t \ge 8$. By Claim 3.3, we have that v_0 and v_{t+1} are bad end vertices of $T(v_0, v_{t+1})$. Let C_0 be the 7-cycle of G containing $v_0 v_1$ whose 2-vertices of a longest thread is deleted in G'. We denote by i the index such that $v_{i-1}v_i \in E(C_0)$ and $v_i v_{i+1} \notin E(C_0)$. By the construction of G', we have $i \le 3$. Then $T(v_i, v_{t+1}) = v_i v_{i+1} v_{i+2} \dots v_t v_{t+1}$ is a (t-i)-thread (where $t-i \ge 5$) of G' with v_i being a good end vertex, which is a contradiction to Claim 3.3.

Claim 3.5 G' contains no (k_1, k_2, k_3) -thread such that $k_1 + k_2 + k_3 \ge 16$.

Proof of Claim 3.5 Suppose to the contrary that G' has a (k_1, k_2, k_3) -thread with center vertex x and end vertices u, v, w such that $d_{G'}(x, u) = k_1 + 1$, $d_{G'}(x, v) = k_2 + 1$, $d_{G'}(x, w) = k_3 + 1$

and $k_1 + k_2 + k_3 \ge 16$. Let xu_1 (xv_1, xw_1 , resp.) be the edge incident with x in the (x, u)-thread ((x, v)-thread, (x, w)-thread, resp.) of G'. Assume that any two of xu_1, xv_1, xw_1 are not in a common facial 7-cycle of G. Note that

$$\max\{d_{G'}(x,u), d_{G'}(x,v), d_{G'}(x,w)\} \ge \left\lceil \frac{k_1 + k_2 + k_3}{3} + 1 \right\rceil \ge 7,$$

w.l.o.g., say $d_{G'}(x, u) \ge 7$. Hence G' contains an (x, u)-thread with x being a good end vertex, a contradiction to Claim 3.3.

Assume instead that two of xu_1, xv_1, xw_1 are in a common facial 7-cycle C_x of G whose 2-vertices of a longest thread is deleted in G', we may, w.l.o.g., assume $xv_1, xw_1 \in E(C_x)$ and $xu_1 \notin E(C_x)$. Let v' be the common neighbor of C_x and the (x, v)-thread T(x, v) such that $d_G(x, v')$ is as large as possible, and let w' be the common vertex of C_x and the (x, w)-thread T(x,w) such that $d_G(x,w')$ is as large as possible. By Claim 3.3, we have that $d_{G'}(x,u) \leq 5$, $d_{G'}(v',v) \leq 5$ and $d_{G'}(w',w) \leq 5$. Then $d_{G'}(x,v') + d_{G'}(x,w') \geq 19 - 5 - 5 - 5 = 4$. By the construction of G', we have $d_{G'}(x, v') + d_{G'}(x, w') \leq \frac{2 \times 7}{3}$. Hence $d_{G'}(x, v') + d_{G'}(x, w') = 4$, $d_{G'}(v,w') = 3, d_{G'}(x,u) = 5, d_{G'}(v',v) = 5 \text{ and } d_{G'}(w',w) = 5.$ Note that $d_{G'}(x,v') \ge 2$ or $d_{G'}(x,w') \geq 2$, say $d_{G'}(x,v') \geq 2$. If v is a good end vertex of T(v,v'), then the thread T(v,v')in G' transfers to a necklace N(v, v') in G, and hence G contains a $B_5(2, 1; 0, 0)$, a contradiction to Claim 3.2 (ii). Assume that C_v is the 7-cycle of G containing vy whose 2-vertices of a longest thread is deleted in G', where y is the neighbor of v in the (v, x)-thread. Let y' be the common neighbor of C_v and the (v, x)-thread T(v, x) such that $d_G(v, y')$ is as large as possible. By the construction of G', we have $d(v, y') \leq 3$. Notice that the thread T(y', v') in G' transfers to a necklace N(y', v') in G. If d(v, y') = 3, then G contains a $B_2(3, 3; 2, 2)$; and if d(v, y') = 2, then G contains a $B_3(2,2;2,2)$; and if d(v,y') = 1, then G contains a $B_4(2,2;2,1)$, hence G contains a $B_4(2,2;0,0)$. In any case, G contains a graph in \mathcal{B} , a contradiction to Claim 3.2 (ii).

Now we are ready to complete the proof by a discharging method on G'.

Let F(G') be the set of faces of G'. From Euler Formula, we have

$$\sum_{v \in V(G')} \left(\frac{5}{2} d_{G'}(v) - 7\right) + \sum_{f \in F(G')} (d_{G'}(f) - 7) = -14.$$
(3.1)

Assign an initial charge $ch_0(v) = \frac{5}{2}d_{G'}(v) - 7$ for each $v \in V(G')$, and $ch_0(f) = d_{G'}(f) - 7$ for each $f \in F(G')$. Hence the total charge is -14 by Eq. (3.1).

We redistribute the charges according to the following rules.

(RI) Every 36^+ -face of G' gives charge $\frac{29}{36}$ to each of its incident vertices.

(RII) Every 3^+ -vertex of G' gives charge $\frac{7}{36}$ to each of its weakly adjacent 2-vertices.

Let ch denote the charge assignment after performing the charge redistribution using rules (RI) and (RII).

Claim 3.6 We have $ch(f) \ge 0$ for each $f \in F(G')$ and $ch(v) \ge 0$ for each $v \in V(G')$. *Proof of Claim* 3.6 Clearly, each 7-face f has charge $ch(f) = ch_0(f) = 0$. Each 36⁺-face f

sends charge $\frac{29}{36}$ to each incident vertices by (RI). So

$$ch(f) = ch_0(f) - \frac{29}{36}d_{G'}(f) = d_{G'}(f) - 7 - \frac{29}{36}d_{G'}(f) = \frac{7}{36}d_{G'}(f) - 7 \ge 0.$$

Hence $ch(f) \ge 0$ for each $f \in F(G')$, and it remains to show that $ch(v) \ge 0$ for each $v \in V(G')$.

Fractional Coloring Planar Graphs

First we assume $d_{G'}(v) = 2$. Then $ch_0(v) = -2$. By Claims 3.1 and 3.4, v is weakly adjacent to two 3⁺-vertices, and thus v receives charge $\frac{7}{36} \times 2$ from them by (RII). By (RI), v receives charge $\frac{29}{36} \times 2$ from its two incident faces. Thus $ch(v) = -2 + \frac{7}{36} \times 2 + \frac{29}{36} \times 2 = 0$.

Next we assume $d_{G'}(v) \geq 3$. Let t(v) be the number of 2-vertices weakly adjacent to v. Suppose v is adjacent to r(v) facial 7-cycles. Since G' contains no cycles of length from 8 to 35, any two 7-cycles of G' have no common edge, and thus $r(v) \leq \frac{d_{G'}(v)}{2}$. By Claim 3.4 and by the construction of G', each thread incident with v contains at most seven 2-vertices and each 7-cycle contains no 2-vertices, and so we have $t(v) \leq 7(d_{G'}(v) - 2r(v))$. By (RI), v receives charge $\frac{29}{36}(d_{G'}(v) - r(v))$ from its incident faces. By (RII), v sends 7/36 to each of its weakly adjacent 2-vertices. Therefore, we have

$$ch(v) = \left(\frac{5}{2}d_{G'}(v) - 7\right) + \frac{29}{36}\left(d_{G'}(v) - r(v)\right) - \frac{7}{36}t(v).$$
(3.2)

Assume that $d_{G'}(v) \ge 4$. By Eq. (3.2), it follows from $t(v) \le 7(d_{G'}(v) - 2r(v))$ that

$$\begin{split} ch(v) &\geq \frac{5}{2} d_{G'}(v) - 7 + \frac{29}{36} (d_{G'}(v) - r(v)) - \frac{7}{36} \cdot 7 (d_{G'}(v) - 2r(v)) \\ &= \frac{35}{18} d_{G'}(v) - 7 + \frac{69}{36} r(v) \\ &\geq \frac{35}{18} \cdot 4 - 7 = \frac{7}{9} > 0. \end{split}$$

Assume instead that $d_{G'}(v) = 3$. Then $ch_0(v) = \frac{1}{2}$ and $r(v) \le 1$. If r(v) = 1, then $t(v) \le 7$ by Claim 3.4. Thus by Eq. (3.2) we have

$$ch(v) \ge \frac{1}{2} + \frac{29}{36} \cdot 2 - \frac{7}{36} \cdot 7 = \frac{27}{36} > 0.$$

If r(v) = 0, then $t(v) \le 15$ by Claim 3.5. Thus it follows from Eq. (3.2) that

$$ch(v) \ge \frac{1}{2} + \frac{29}{36} \cdot 3 - \frac{7}{36} \cdot 15 = 0.$$

This proves Claim 3.6.

By Eq. (3.1) and Claim 3.6, we have

$$-14 = \sum_{v \in V(G')} ch_0(v) + \sum_{f \in F(G')} ch_0(f) = \sum_{v \in V(G')} ch(v) + \sum_{f \in F(G')} ch(f) \ge 0,$$

a contradiction. This contradiction finishes the proof of Theorem 1.8.

4 Concluding Remarks

In this paper, we complete the proof of the fractional version of Conjecture 1.4, namely, every planar graph of girth p without cycles of length from p + 1 to p(p-2) is fractional $(p:\frac{p-1}{2})$ colorable for any prime $p \ge 5$. However, the related fractional version of Conjecture 1.1 is still open for $k \ge 3$. In view of Theorem 1.3 (ii), it would be interesting to attempt to make an improvement on its fractional version, that is, to show that every planar graph of girth at least 14 is fractional (7:3)-colorable. There are also some versions of those circular and fractional coloring problems concerning forbidden odd cycles, and we refer the readers to [11] for more details.

Acknowledgements We sincerely thank all the referees for their time and helpful comments.

References

- Borodin, O. V., Glebov, A. N., Raspaud, A., et al.: Planar graphs without cycles of length from 4 to 7 are 3-colorable. J. Combin. Theory Ser. B, 93, 303–311 (2005)
- Borodin, O. V., Kim, S.-J., Kostochka, A. V., et al.: Homomorphisms from sparse graphs with large girth. J. Combin. Theory Ser. B, 90, 147–159 (2004)
- [3] Cohen-Addad, V., Hebdige, M., Král', D., et al.: Steinberg's conjecture is false. J. Combin. Theory Ser. B, 122, 452–456 (2017)
- [4] Cranston, D., Li, J.: Circular flows in planar graphs. SIAM J. Discrete Math., 34, 497-519 (2020)
- [5] Dvořák, Z., Postle, L.: Density of 5/2-critical graphs. Combinatorica, 37, 863-886 (2017)
- [6] Dvořák, Z., Škrekovski, R., Valla, T.: Planar graphs of odd-girth at least 9 are homomorphic to the Petersen graph. SIAM J. Discrete Math., 22, 568–591 (2008)
- [7] Galluccio, A., Goddyn, L., Hell, P.: High girth graphs avoiding a minor are nearly bipartite. J. Combin. Theory Ser. B, 83, 1–14 (2001)
- [8] Grötzsch, H.: Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Math. Natur. Reihe, 8, 109–120 (1959)
- Han, M., Li, J., Wu, Y., et al.: Counterexamples to Jaeger's Circular Flow Conjecture. J. Combin. Theory Ser. B, 131, 1–11 (2018)
- [10] Hilton, A., Rado, R., Scott, S.: A (< 5)-color theorem for planar graphs. Bull. Lond. Math. Soc., 5, 302–306 (1973)
- [11] Hu, X., Li, J.: Circular coloring and fractional coloring in planar graphs. J. Graph Theory, 2021 https://doi.org/10.1002/jgt.22742
- [12] Jaeger, F.: Nowhere-zero flow problems, In: Selected Topics in Graph Theory 3, (L. W. Beineke and R. J. Wilson eds.), Academic Press, London, 71–95 (1988)
- [13] Klostermeyer, W., Zhang, C.-Q.: $(2 + \epsilon)$ -coloring of planar graphs with large odd girth, J. Graph Theory, **33**, 109–119 (2000)
- [14] Lovász, L. M., Thomassen, C., Wu, Y., et al.: Nowhere-zero 3-flows and modulo k-orientations. J. Combin. Theory Ser. B, 103, 587–598 (2013)
- [15] Naserasr, R.: Mapping planar graphs into projective cubes. J. Graph Theory, 74(3), 249–259 (2013)
- [16] Nešetřil, J., Zhu, X.: On bounded tree-width duality of graphs. J. Graph Theory, 23, 151-162 (1996)
- [17] Postle, L., Smith-Roberge, E.: On the density of C_7 -critical graphs. Acta Math. Univ. Comenian. (N.S.), **88**(3), 1009–1016 (2019)
- [18] Thomassen, C.: The weak 3-flow conjecture and the weak circular flow conjecture. J. Combin. Theory Ser. B, 102, 521–529 (2012)
- [19] Tutte, W. T.: A contribution on the theory of chromatic polynomial. Canad. J. Math., 6, 80–91 (1954)
- [20] Zhu, X.: Circular chromatic number of planar graphs of large odd girth. *Electron. J. Combin.*, 8, R25, 11 pp. (2001)